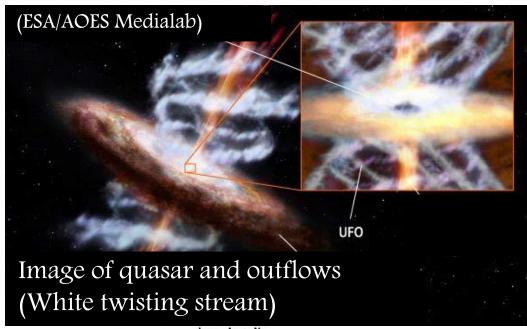
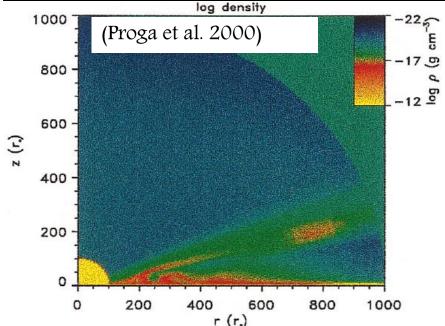
可視光赤外線観測の現状~アウトフローの観測~

Recent Results of Outflow Observations

国立天文台 水沢VLBI観測所 石垣島天文台 特任研究員 堀内 貴史 Takashi Horiuchi (NAOJ)


Contents

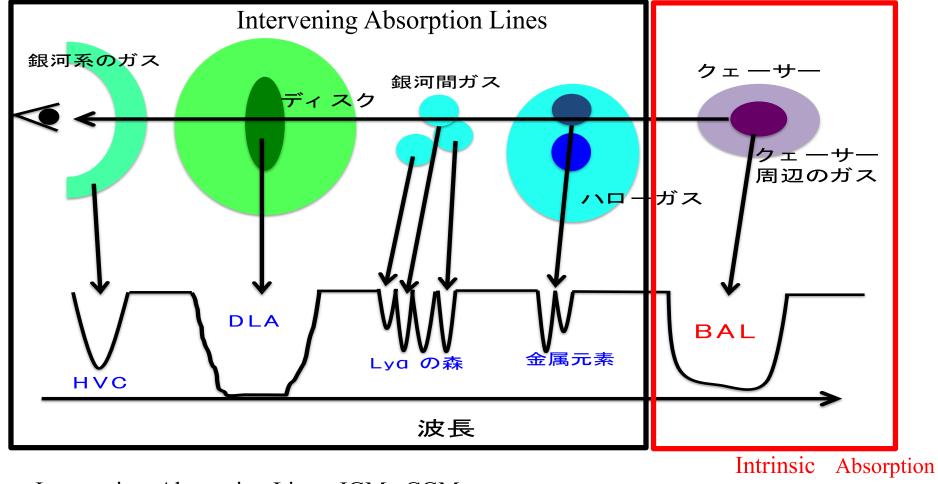

• Observational evidence of quasar outflows - BALs, mini-BALs, NALs -

• BAL to non-BAL quasar transformations !? (Sameer et al. 2018, arXiv:1810.03625v2)

• BAL quasar at a redshift of 7.02! (Wang et al. 2018, arXiv:1810.11925)

Quasar Outflows

Quasar outflows are important element for

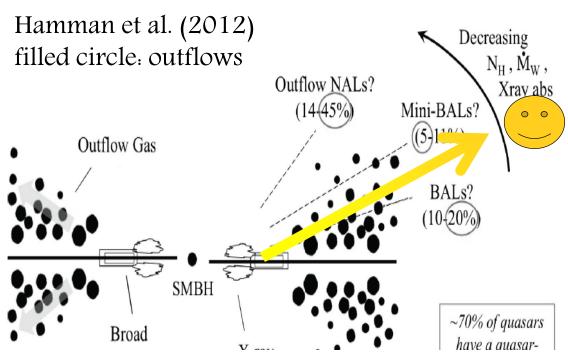

- (i) quasar growth,
- (ii) chemical evolution for host galaxy and intergalactic space

Mechanisms to launch outflows (candidates)

- Radiation pressure (Proga et al. 2000; Nomura et al. 2012, 2015)
- Magnetic Force (Everett 2005)

Using quasar absorption lines to study ouflows!

Quasar Absorption Line

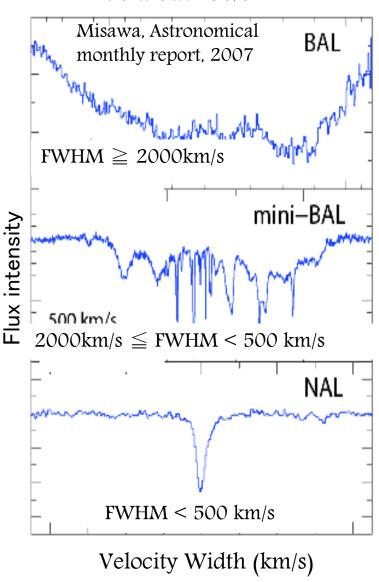


Intervening Absorption Lines: IGM, CGM etc

Intrinsic Absorption Lines : Outflow Gas

Lines

Quasar intrinsic absorption lines. BALs, mini-BALs and NALs



BALs. The main current of outflow study

mini-BALs and NALs. They are attracting attention in recent year

Estimation of physical parameters is possible!

AL via outflows

About Broad Absorption Lines (BALs)

• Definition for BALs: Balnicity Index (Weymann et al. 1991)

 ${\rm BI} = \int_{v_{\rm min}}^{v_{\rm max}} \left(1 - \frac{f(v)}{0.9}\right) C dv \qquad \text{1. Quantity in brackets is continuously greater than zero for more than 2,000 km/s}$ 0. otherwise

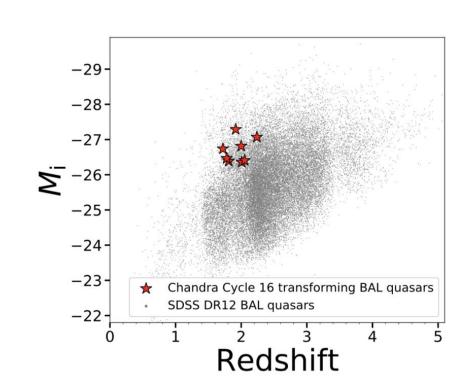
• Velocities are usually set to 3,000 and 25,000 km/s

To avoid strong absorption complexes around blueward of C IV emission

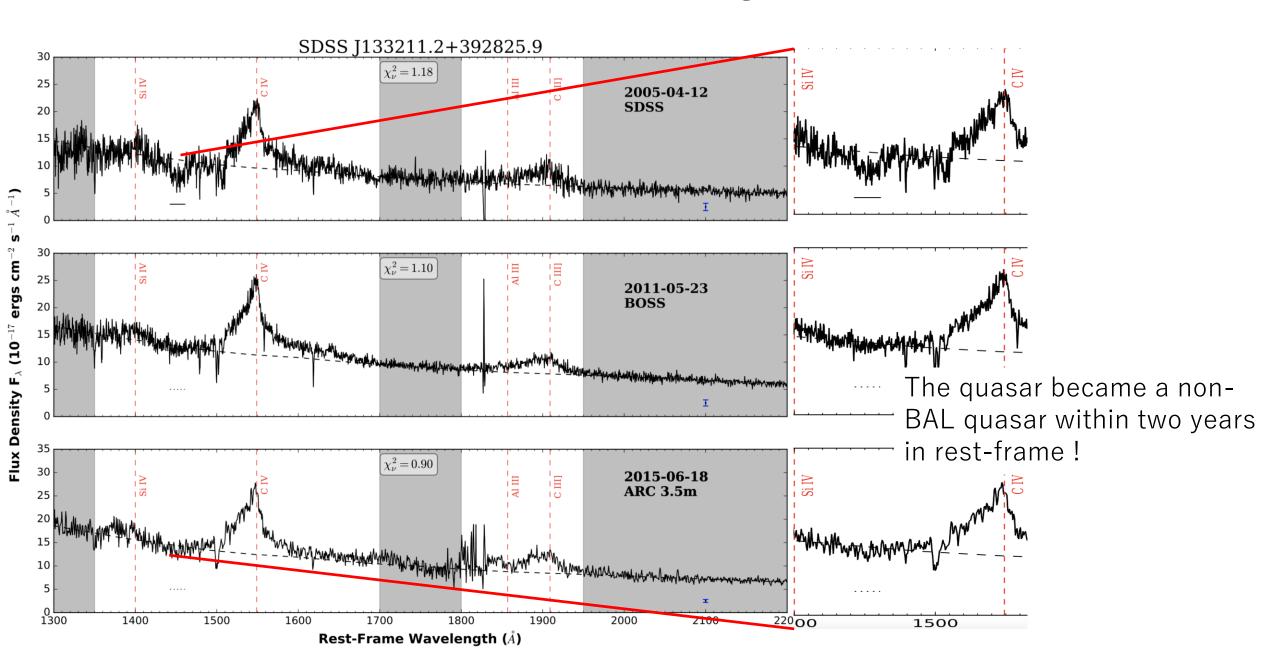
To avoid ambiguities with Si IV emission and absorption

• BI(maximum) = 20,000 km/s (=25,000-3,000-2,000) km/s

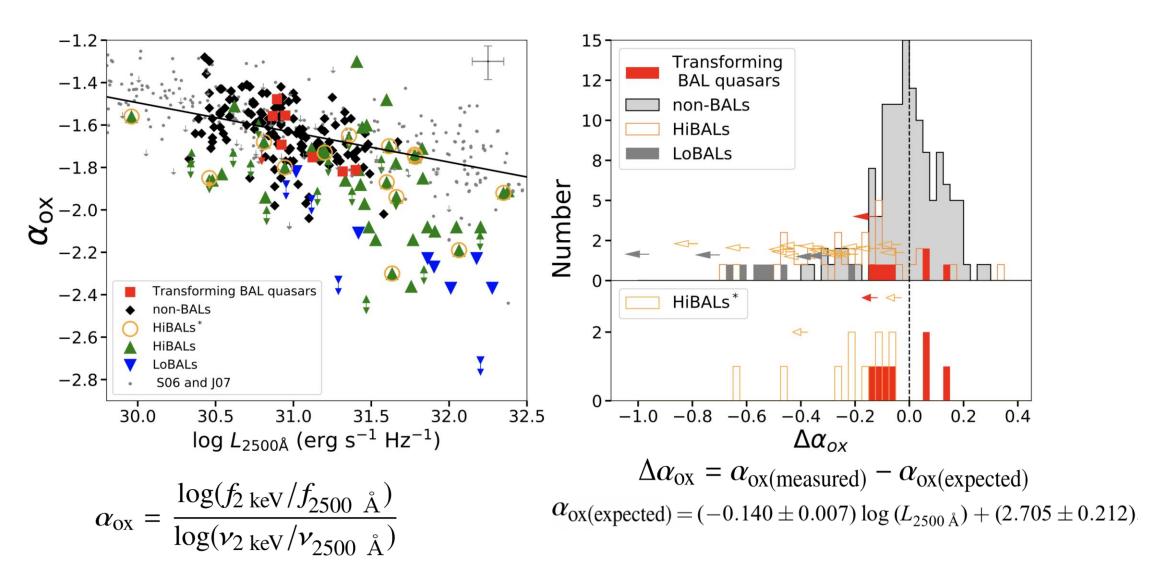
Contents


• Observational evidence of quasar outflows – BALs, mini-BALs, NALs –

• BAL to non-BAL quasar transformations !? (Sameer et al. 2018, arXiv:1810.03625v2)


• BAL quasar at a redshift of 7.02! (Wang et al. 2018, arXiv:1810.11925)

Samerr et al. (2018): ABSTRACT


- Theme: X-ray and optical/UV study of eight BAL to non-BAL transforming quasars at $z \approx 1.7-2.2$ over 0.29–4.95 rest-frame years.
- Data:
 SDSS, BOSS, Gemini, and ARC 3.5-m (optical), Chandra (X-ray)
- Results: New Chandra observations show α_{OX} and $\Delta\alpha_{OX}$ of are consistent with those
- Conclusion: X-ray and optical/UV observation
 - (At least) The X-ray absorbing material moving out of the line-of-sight, leaving an X-ray unabsorbed non-BAL quasar.
 - The UV absorber might have become more highly ionized (in a shielding-gas scenario) or also moved out of the line-of-sight (in a wind-clumping scenario).

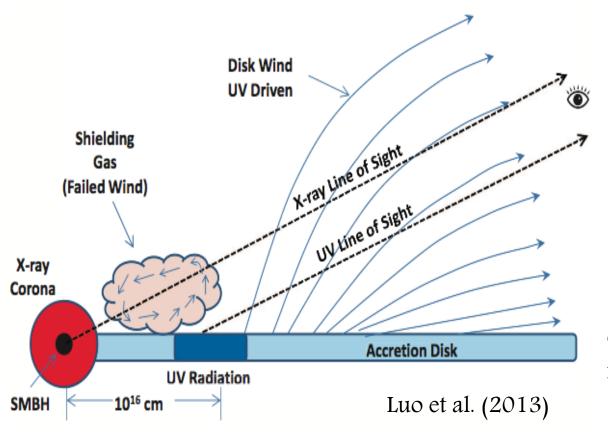
An Example of non-BAL transforming

Comparing X-ray-to-optical power-law slope α_{OX} and $\Delta\alpha_{OX}$

X-ray, optical, and radio properties

Object Name (SDSS J)	z	$m_{ m i}$	$M_{ m i}$	$N_{ m H}$	Count Rate	$F_{0.5-2~{ m keV}}$	$f_{ m 2~keV}$	$\frac{\log L_{\rm X}}{(2-10 \text{ keV})}$	$f_{ m 2500~\AA}$	$\frac{\log L_{\nu}}{(2500 \text{ Å})}$	α_{ox}	$\Delta lpha_{ox}(\sigma)$	R
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
074650.59+182028.7	1.92	17.96	-27.36	4.17	$1.63^{+1.27}_{-0.77}$	$0.94^{+0.79}_{-0.53}$	$4.11^{+3.43}_{-2.30}$	44.46	2.24 ± 0.22	31.32 ± 0.10	$-1.82^{+0.10}_{-0.08}$	-0.14(0.89)	<2.17
085904.59 + 042647.8		18.74		4.11	< 1.0	< 0.57	< 2.39	< 44.18	0.75 ± 0.07	30.80 ± 0.10	<-1.72	< -0.12(0.64)	< 4.46
093620.52 + 004649.2	1.72	18.26	-26.81	3.85	$4.38^{+1.72}_{-1.28}$	$2.51^{+1.24}_{-1.05}$	$10.21^{+5.05}_{-4.27}$	44.77	1.15 ± 0.12	30.95 ± 0.10	$-1.56^{+0.07}_{-0.06}$	0.07(0.41)	< 2.94
114546.22 + 032251.9	2.01	19.01	-26.42	2.19	$2.54_{-0.71}^{+0.95}$	$1.40^{+0.67}_{-0.58}$	$6.31^{+3.02}_{-2.58}$	44.68	0.72 ± 0.07	30.87 ± 0.10	$-1.56^{+0.07}_{-0.06}$	0.06(0.33)	< 5.74
133211.21 + 392825.9	2.05	19.01	-26.46		-11 94		$10.49_{-3.89}^{+4.24}$ $3.99_{-3.63}^{+2.63}$	44.91	0.75 ± 0.08	30.89 ± 0.10	$-1.48^{+0.06}_{-0.06}$	0.14(0.79)	< 5.21
142132.01 + 375230.3	1.78	18.61	-26.54	0.92	$1.79^{+1.05}_{-0.70}$	$0.96^{+0.63}_{-0.47}$	$3.99^{+2.63}_{-1.96}$	44.38	1.02 ± 0.10	30.92 ± 0.10	$-1.69^{+0.09}_{-0.07}$	-0.07(0.38)	< 3.66
152149.78 + 010236.4	2.24	18.45	-27.22	4.24	$1.39^{+0.92}_{-0.59}$	$0.81^{+0.59}_{-0.42}$	$3.89^{+2.83}_{-2.02}$	44.55	2.04 ± 0.21	31.40 ± 0.10	$-1.81^{+0.09}_{-0.07}$	-0.12(0.79)	< 3.96
152243.98+032719.8	2.00	18.56	-26.86	3.81	$1.39_{-0.59}^{+0.59}$ $1.39_{-0.59}^{+0.92}$	$0.81_{\substack{-0.42 \\ -0.41}}$ $0.80_{\substack{+0.58 \\ -0.41}}$	$3.89^{+2.83}_{-2.02}$ $3.57^{+2.60}_{-1.86}$	44.43	1.31 ± 0.13	31.12 ± 0.10	$-1.75^{+0.09}_{-0.07}$	-0.10(0.59)	<3.88

New Chandra Observation


Table 3. Chandra observation log and X-ray counts

Object Name (SDSS J)	ObsID	Date	Exposure Time (ks)	Full-Band Cts. (0.5–8.0 keV)	Soft-Band Cts. (0.5–2.0 keV)	Hard-Band Cts. (2.0–8.0 keV)	Band Ratio	$\Gamma_{ m eff}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
074650.59+182028.7	17021	2015 Dec 03	2.54	$9.51^{+4.21}_{-3.04}$	$4.15^{+3.22}_{-1.95}$	$5.46^{+3.50}_{-2.27}$	$1.32^{+1.02}_{-0.69}$	$0.67^{+0.72}_{-0.54}$
085904.59 + 042647.8	17023	$2016~\mathrm{Jan}~04$	3.92	$3.09_{-1.69}^{+2.99}$	< 4.07	$2.13_{-1.36}^{+2.72}$	> 0.52	< 1.56
093620.52 + 004649.2	17022	$2015~\mathrm{Mar}~16$	2.61	$13.76_{-3.67}^{+4.82}$	$11.44^{+4.50}_{-3.33}$	$2.15_{-1.36}^{-1.36}$	$0.19^{+0.24}_{-0.13}$	$2.55^{+1.06}_{-0.80}$
114546.22 + 032251.9	17029	$2016~{\rm Feb}~09$	4.91	$16.88^{+5.22}_{-4.08}$	$12.46^{+4.64}_{-3.49}$	$4.30^{+3.27}_{-2.01}$	$0.13_{-0.18}^{-0.13}$ $0.34_{-0.18}^{+0.28}$	$1.93^{+0.70}_{-0.57}$
133211.21 + 392825.9	17028	$2015~\mathrm{Aug}~24$	4.83	$25.48^{+6.13}_{-5.02}$	$20.84^{+5.65}_{-4.53}$	$4.35_{-2.01}^{+3.27} 4.35_{-2.01}^{+3.27}$	$0.21^{+0.16}_{-0.10}$	$2.38^{+0.64}_{-0.55}$
142132.01 + 375230.3	17027	2015 Oct 07	3.49	$7.38^{+3.86}_{-2.66}$	$6.24^{+3.65}_{-2.43}$	< 4.26	< 0.68	> 1.25
152149.78 + 010236.4	17026	$2015~\mathrm{Jun}~12$	3.73	$6.29^{+3.67}_{-2.46}$	$5.18^{+3.44}_{-2.20}$	< 4.23	< 0.82	> 1.13
152243.98+032719.8	17024	2015 Apr 12	3.73	$11.62^{+4.53}_{-3.37}$	$5.18_{-2.20}^{+3.244}$	$6.56^{+3.71}_{-2.50}$	$1.27^{+0.88}_{-0.61}$	$0.70^{+0.64}_{-0.50}$

Column (1): The SDSS J2000 equatorial coordinates for the quasar. Column (2): Chandra observation ID. Column (3): Date of observation of the target with Chandra. Column (4): Background-flare cleaned effective exposure time. Columns (5), (6), (7): The X-ray data analysis was carried out using the procedure in Luo et al. (2015). Errors on the X-ray counts were calculated using Poisson statistics corresponding to the 1σ significance level using Gehrels (1986). A source is considered undetected if the $P_{\rm B}$ value, defined via Equation (3) in Section 3.1, in a band is > 0.01, in which case an upper limit on the source counts was derived. Column (8): Band ratio is the hard band to soft band ratio. Column (9): The effective power-law photon index, $\Gamma_{\rm eff}$.

Consideration about ancillary mechanism

Are ionization states in outflows influenced by changing optical thickness of X-ray shielding gas observed by X-ray!?

Eight transforming BAL quasars show no evidence for intrinsic X-ray absorption

→ X-ray absorbing material moving out of the line-of-sight!

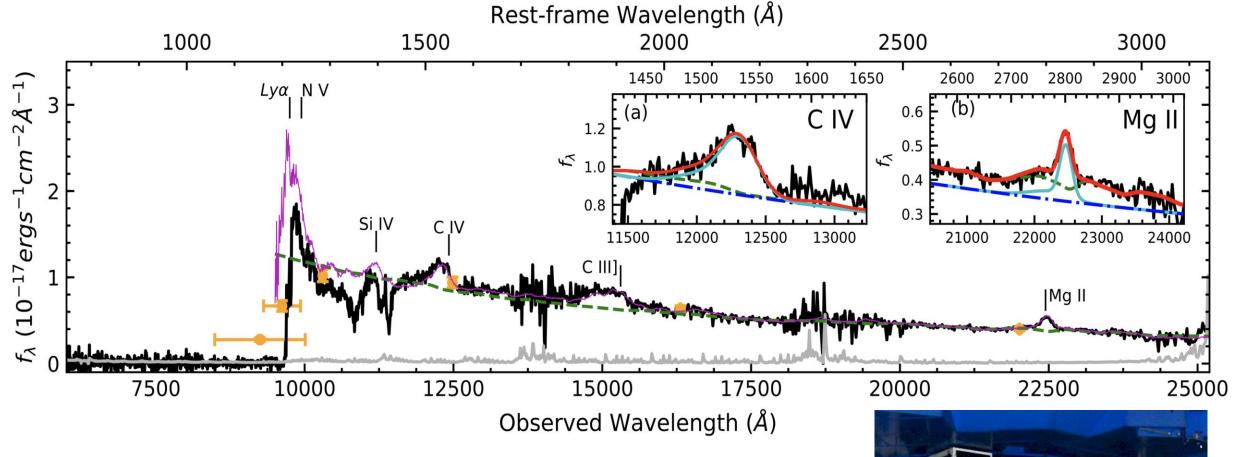
Generally, BAL quasars show strong intrinsic X-ray absorption

Contents

• Observational evidence of quasar outflows – BALs, mini-BALs, NALs –

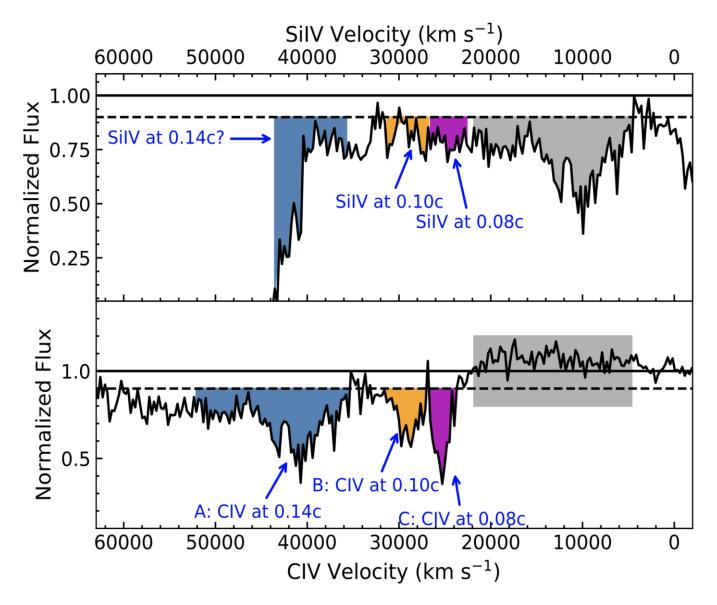
• BAL to non-BAL quasar transformations !? (Sameer et al. 2018, arXiv:1810.03625v2)

• BAL quasar at a redshift of 7.02 (Wang et al. 2018, arXiv:1810.11925)

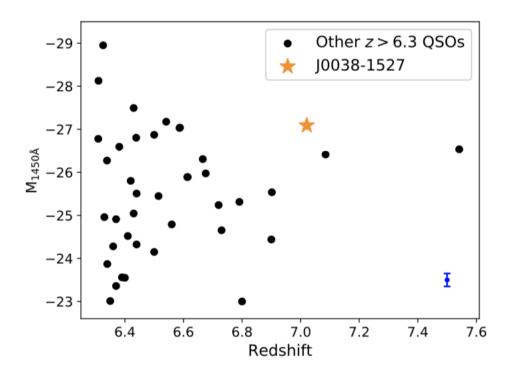

Wang et al. (2018): ABSTRACT

- Theme: The discovery of a luminous quasar at z = 7.021, DELS J003836.10–152723.6 (hereafter J0038–1527), selected using photometric data.
- Photometric data:

DESI Legacy imaging Survey (DELS), Pan-STARRS1 (PS1) imaging Survey, WISE mid-infrared all-sky survey


- J0038–1527 is the most luminous quasar known at $z > 7 \left(L_{Bol} = 5.6 \times 10^{13} L_{\odot}\right)$
 - Eddington ratio of 1.25±0.19
 - Outflow velocity = 0.08c to $0.14c \rightarrow extremely high velocity !!$
- J0038–1527 is the first quasar found at the epoch of reionization with such strong outflows ! \rightarrow These contribute the growth of the most massive galaxies !

Spectrum of J0038–1527


Gemini/GNIRS, with a total exposure time of 4.2 hours

Normalized spectrum and BALs with extremely high velocity

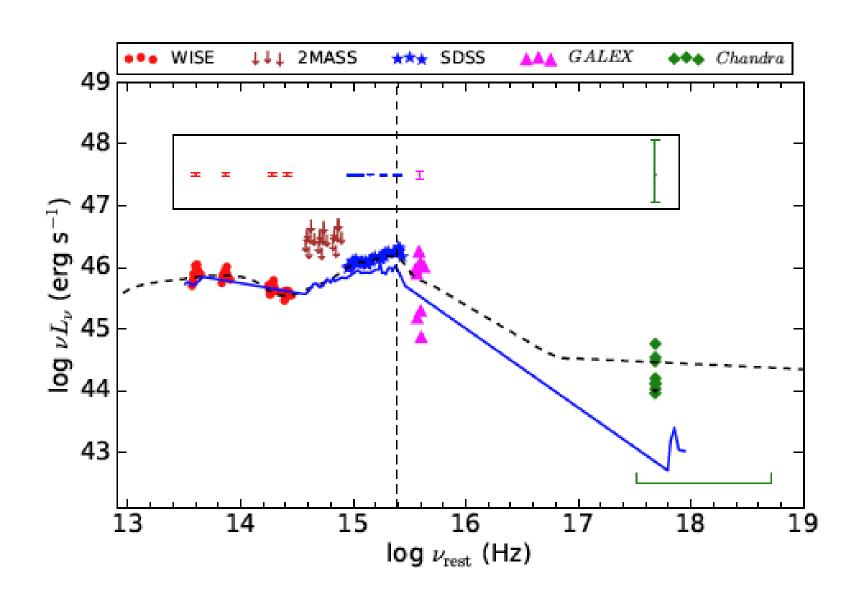
- Normalized spectrum of J0038–1527
- The quasar has three absorption systems at 0.14c, 0.10c, and 0.08c!
- BI = 3400 km/s (A), 890 km/s (B), 1010 km/s (C) for CIV BAL

Derived Parameters of J0038–1527

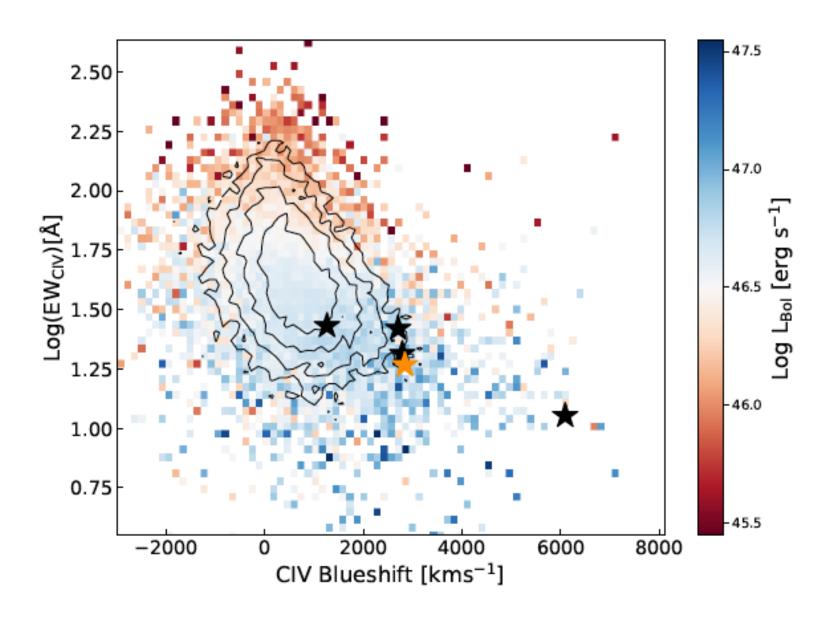
• J0038–1527 has high Eddington–ratio.

$z_{ m MgII}$	$7.025 {\pm} 0.005$
$z_{ m CIV}$	$6.939 {\pm} 0.008$
$lpha_\lambda$	$-1.54 {\pm} 0.05$
$\Delta_{\mathrm{v_{CIV}}-\mathrm{v_{MgII}}}~(\mathrm{km~s^{-1}})$	3400 ± 411
$FWHM_{MgII} (km s^{-1})$	$2994 {\pm} 140$
${ m EW_{MgII}}$ (Å)	$16.5 {\pm} 1.0$
$FWHM_{CIV} (km s^{-1})$	$8728 {\pm} 452$
$\mathrm{EW}_{\mathrm{CIV}}$ (Å)	$18.1 {\pm} 1.4$
$\lambda L_{3000 \text{Å}} \ ({\rm erg \ s^{-1}})$	4.19×10^{46}
$L_{\rm Bol} \ ({\rm erg} \ {\rm s}^{-1})$	2.16×10^{47}
$M_{ m BH}~({ m M}_{\odot})$	$(1.33\pm0.25)\times10^9$
$L_{ m Bol}/L_{ m Edd}$	$1.25 {\pm} 0.19$

Summary of the two studies


- Conclusion: X-ray and optical/UV observation
 - (At least) The X-ray absorbing material moving out of the line-of-sight, leaving an X-ray unabsorbed non-BAL quasar.
 - The UV absorber might have become more highly ionized (in a shielding-gas scenario) or also moved out of the line-of-sight (in a wind-clumping scenario).

Sameer et al. (2018)


- J0038–1527 is the most luminous quasar known at $z > 7 \left(L_{Bol} = 5.6 \times 10^{13} L_{\odot}\right)$
 - Eddington ratio of 1.25±0.19
 - \Leftrightarrow Outflow velocity = 0.08c to 0.14c \rightarrow extremely high velocity !!
- J0038–1527 is the first quasar found at the epoch of reionization with such strong outflows ! \rightarrow These contribute the growth of the most massive galaxies !

Wang et al. (2018)

Appendix I: SED (Samerr et al. 2018)

Appendix II: CIV Emission Blueshift (Wang et al. 2018)

