2018/11/29 Cosmic Shadow 2018 @Ishigaki

Monitoring the variable mini-BAL system in the quasar UM675

UM675に見られるmini-BALの 時間変動について

Dai Ishita ,Toru Misawa ,Daisuke Itoh (Shinshu Univ)

Introduction

AGN outflow wind

-> It is blown wind from accretion disk by radiation or magnetic pressure.

Why AGN outflow wind is important?

- It promotes gas accretion by drawing out angular momentum.
- -> leading to the **co-evolution of SMBH** (e.g., Murray et al. 1995)
- It distributes heavy elements to host galaxy and inter-galactic region.
- -> leading to cosmic **chemical evolution** (e.g., Dunn et al. 2012)
- It releases energetic gas.
- -> suppressing star formation rate (e.g., Di Matteo et al. 2005)

Classification of absorption line

mini-BAL is intermediate class between BAL and NAL.

mini-BALs have the advantages of both BALs and NALs!

variability in outflow absorption line

mini-BAL quasar UM675

- $z_{em} \sim 2.147$, relatively bright QSO ($L_{bol} \sim 10^{47}$ erg/s), Radio loud
- Lya, C IV, and N V mini-BALs at $z_{abs} \sim 2.134$ ($v_{ej} \sim 1,500$ km/s)
 - 2 narrow C IV components with FWHM ≤ 50km/s in mini-BAL

In this study, we monitor physical parameters of both broad and narrow components of the mini-BAL system by applying model fitting, and find a possible model for time variability.

Voigt profile fitting of the C IV mini-BAL in UM675

Date list	Epoch1	Epoch2	Epoch3	
Observed data	1994/09/24-25	2005/08/19-20	2008/01/15	
Time delay since E1 [year]	0	3.7	4.2	
Telescope/Insturment	KecK/ HIRES	Subaru/ HDS	Keck/ HIRES	
S/N(λ~4800Å) [/pixel]	~ 40	~ 40	~10	
spectral resolution	34000	36000	47000	ding

Time variability of the C IV mini-BAL in UM675

Monitoring line parameters of the absorbers

Discussion

Working model

- square-shaped source and absorber.
- comparable sizes of source and absorber.
- absorber is moving in Kepler motion.
- $M_{\rm BH} \sim 2 \times 10^9 \, M_{\odot}$ (Coatman et al. 2016)

Background source

- BLR + Continuum
 - absorption is deeper than continuum level.

*R*_{BLR} ~ 0.1 pc (Lira et al. 2018)

*absorber is located in front of BLR

(2) Variable Ionization scenario (VIS)

- **Recombining VIS** ${\color{black}\bullet}$
 - assuming variability is caused by only recombination.
 - (variability time) \geq (recombination time)

E2-E3

- absorption strength -> strong
- CV -> CIV dominante

Ionizing VIS

- assuming variability is caused by ionization.
- Because ionization is complicated, we only focus qualitative discussion. \bullet

Constraints on physical parameters

	electron density n _e [cm ⁻³]	source - gas distance <i>r</i> [pc]	thickness d [pc]	propriety of (n _e ,r ,d)	consistency of variability and each scenario
Gas motion (BLR + cont.)	≳ 1.2 × 10 ¹⁰	≲ 0.09	≲ 2 × 10-11	×	0
VIS (Recombination)	≳ 1.5 × 104	≲ 1900	≲ 1.4 × 10 ⁻⁵	Ο	$\langle n_{\scriptscriptstyle ext{proad}} angle \ll n_{\scriptscriptstyle ext{broad}} angle$

Summary

- We performed Voigt profile fitting for the CIV mini-BAL to monitor physical parameters of broad and narrow components using high-resolution (R~40,000) spectra taken with 8-10m class telescopes.
- Broad component showed an obvious variability ($\geq 3\sigma$), while narrow ones don't ($\leq 2\sigma$)
- For broad component we considered two scenarios (i.e., gas motion scenario and variable ionization scenarios) as the cause of time variability.
- Gas motion scenario is less likely because it requires.
- In VIS this result is possible, but it gives only weak constraints or only qualitative evaluation.
- Future work
 - We'll consider ionizing VIS using Cloudy and apply the same analyses for other target's.