Cosmic Shadow 2018 2018年11月24-25日@石垣島

近傍AGN吸収線系における ミリ波サブミリ波観測

泉拓磨/Takuma Izumi (NAOJ Fellow)

Necessity of "negative" AGN feedback

AGN wind@accretion disk-scale

Ratio

Ultra Fast Outflow (UFO)

- Very fast: ~0.1-0.3c
- Highly ionized
- Wide solid angle:
 Ω/4π ~0.4 (Gofford+15)

log (N_H/cm²) > 20-21 ▲

AGN wind@host galaxy-scale

8R.R. (-)

10

5

-5

-10

- V_{out}: up to ~1000 km/s
- R_{out}: up to
 ~1 kpc
- Mass outflow rate is well correlated with the AGN power

Cicone et al. 2014, A&A, 562, A21

Types of conservation (energy vs momentum)

Gone with the wind

Toward the statistical view

KINETIC ENERGY TRANSFER FROM X-RAY ULTRAFAST OUTFLOWS TO MM/SUB-MM COLD MOLECULAR OUTFLOWS IN SEYFERT GALAXIES

- UFO search in galaxies hosting mol. outflows (Cicone et al. 2014)
- Six AGNs are found to host UFOs (XMM, Suzaku)
- Measure "energy transfer rate" from UFOs to mol. outflows.

 $C = \dot{K}_{\rm mol} / \dot{K}_{\rm UFO}$

Wide variety in the energy transfer rate ⁸

Some favour energy conserving, some do momentum conserving, the others in between...

Can we explain this messy trend by a physical model??

Dependence on M_{BH} may be the key?

- Both "energy-" and "momentum-" conserving modes exist.
- Roughly a negative trend with M_{BH}
- Radiative cooling is
 more efficient for
 higher М_{ВН} objects

Dependence on M_{BH} may be the key?

$$t_{\rm cool} = \frac{2cR^2}{3\pi GM_{\rm BH}} \left(\frac{m_e}{m_p}\right)^2 \left(\frac{v}{c}\right)^{-2} b, \quad (Compton \ cooling)$$

10

$$t_{\rm flow} = R \left(\frac{2\pi G^2 M_{\rm BH}}{f_g \sigma^2 \kappa} \right)^{-1/2}, \quad (Flow time-scale)$$

$$\frac{t_c}{t_f} = \frac{2}{3\pi} c R \left(\frac{m_e}{m_p}\right)^2 \left(\frac{v}{c}\right)^{-2} b \left(\frac{2\pi}{M_{\rm BH} f_{\rm gas} \sigma^2 \kappa}\right)^{1/2}$$
$$\simeq 1.8 \left(\frac{M_{\rm BH}}{10^8 M_{\odot}}\right)^{-1/2} \left(\frac{R}{1\,{\rm kpc}}\right) \left(\frac{v}{0.1c}\right)^{-2}.$$

Summary and Issues

- Powerful AGN-driven winds are one of the key components to regulate galaxy-evolution.
- Both accretion disk-scale winds (UFOs) and galaxy-scale winds (molecular outflows = MOs) have been extensively studied.
- We examined physical connection (energy transfer rate) between UFOs and MOs, and found a wide variety from 0.7% to 100%.
- The energy transfer rate seems to correlate with M_{BH} \rightarrow balance of cooling and flow time scales may explain.
- Geometry of UFOs?? Radius, Covering factor...
- Statistical sample of MOs → ALMA!