Cosmic Shadow 2018 @ Ishigaki 24-25 Nov 2018

# Search for metal-absorber host galaxies near the Epoch of Reionization

Daichi Kashino (ETH Zurich) Collaborations with S. Lilly, R. Simcoe, R. Bordoloi

Background image: simulation by K.Hasegawa

### Recent report by Becker et al. 2018

LAE survey with NB816 (z=5.7) in the field of QSO0148+0600, corresponding to the long dark trough.

High- $\tau_{HI}$  is likely to be associated with high LAE surface density.

The fluctuating- $\Gamma_{HI}$  model is preferred.





#### Cosmic Shadow @ Ishigaki 24-25 Nov 2018

### Recent report by Becker et al. 2018

LAE survey with NB816 (z=5.7) in the field of QSO0148+0600, corresponding to the long dark trough.

Is this really the evidence of a negative  $\Sigma_{gal}$ - $\tau_{eff}$  correlation?

#### Are LAEs really suited to this kind of study?

Lya emission is *definitely* suppressed in such high  $\tau_{eff}$  regions.

Are LAEs really tracing the underlying density field? Complimentary surveys of other types of galaxies are required.

#### Only a single point in the $\Sigma gal$ vs $\tau_{\rm HI}$ plane.

More data points across a wide range of  $\tau_{HI}$  are required to see the correlation.



# Subaru/HSC: Approved in S18B, S19A Revealing the $\tau_{HI}$ — $\Sigma_{gal}$ relation over large scales

LBG selection with *r*, *i*, *z* (z<=25.7), aiming to detect N~250 per HSC FoV



Collaboration with Kashikawa-san's LAE survey in QSO fields => direct test of possible suppression of LAE/LBG where we know  $\tau_{eff}$ 

#### Cosmic Shadow @ Ishigaki 24-25 Nov 2018

## Today's talk

- 1. Background
- 2. Our projects starting up right now using JWST, ALMA and MUSE
- 3. Summary

## Background

## Metal absorption systems back to z~6

- High-z quasars started to be found by SDSS back to z~6 around 2000, and recently, many z~6 quasars (O(10<sup>2</sup>)) are being discovered by various wide surveys.
- Astronomers have studied metal pollution of the IGM and metal budget of the Universe using absorption lines seen in quasar spectra.



A downward trend in  $\Omega_{CIV}$  /  $\Omega_{S_{SIIV}}$  discovered at z>5.

What cause the decline in  $\Omega_{CIV}$  at z>5 ?

- the evolution of metal abundance?
- change in ionization condition?

see also e.g., Simcoe 06, Simcoe+11, Becker+06, 09, 11, Ryan-Weber+09, D'Odorico+10,13, Chen+17, Bosman+17

#### Cosmic Shadow @ Ishigaki 24-25 Nov 2018

## Metal absorption systems back to z~6

Excess of *low-ionization*  $O_I$  (+Sill, CII) systems at z>5.5 (Becker+06) — Evidence of change in ionization background



Compilation from the literature

The evolution of  $\Omega_{ion}$  of low-ionization ions remains poorly constrained.



Codoreanu+18

## Host galaxies of metal absorption systems

At intermediate redshifts (Simcoe+06)





Possible hosts of a strong Ly $\alpha$  + C<sub>IV</sub> absorber found up to ~320 pkpc from the quasar sightline.

(but, can we say they are really hosts with such large b?) Remarkable metal enhancement at ~100 pkpc.



At further higher redshifts, spectroscopy is more challenging...

#### Cosmic Shadow @ Ishigaki 24-25 Nov 2018

## Few identifications at $z \gtrsim 4$

-South

Possible identification via Lyα at z=5.7 (b=79 pkpc, dv=-240 km/s)

But no consistent detection is found in a MUSE cube (preliminary)

Alternative tracer at high redshifts [CII]158µm with ALMA



# Few identifications at $z \gtrsim 4$



Cosmic Shadow @ Ishigaki 24-25 Nov 2018

## Our projects starting up right now

- JWST/NIRCam WFSS as an ultimate study
- ALMA and MUSE to search for absorber hosts

# Our GTO program: Exploring the end of cosmic reionization

PI Simon Lilly, ETH Zurich In collaboration with Rob Simoe, Rongmon Bordoloi (MIT)

Cosmic Shadow @ Ishigaki 24-25 Nov 2018

|                                       | Instrument                                                            | What we can do?                                                                                                                                                                                                  |
|---------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C C C C C C C C C C C C C C C C C C C | Near-InfraRed<br>Camera<br><b>NIRCam</b>                              | <ul> <li>Imaging at 0.6–5.0 µm in two 2.2' x 2.2' FoVs</li> <li>Wide-field Slitless spectroscopy (WFSS; R~1000)</li> <li>Coronagraphic imaging</li> </ul>                                                        |
| R                                     | Mid-InfraRed<br>Instrument<br><b>MIRI</b>                             | <ul> <li>Imaging at 5.6–25.5 μm in 74" × 113" FOV</li> <li>Low-resolution slitted and slit less spectroscopy</li> <li>IFU spectroscopy in 4.9–28.8 μm</li> <li>Coronagraphic imaging</li> </ul>                  |
| NIRSPEC                               | Near-InfraRed<br>Spectrograph<br><b>NIRSpec</b>                       | <ul> <li>MOS with multi-shutter assembly at 0.6–5.3 µm</li> <li>3" x 3" IFU spectroscopy</li> <li>High contrast single object spectroscopy</li> </ul>                                                            |
|                                       | Near InfraRed<br>Imager and Slitless<br>Spectrograph<br><b>NIRISS</b> | <ul> <li>Low-res. (R~150) WFSS in 0.8–5.0 μm (2.2' x 2.2' FoV)</li> <li>Single object slit less spectroscopy</li> <li>Aperture-masking interferometry (beyond λ/D)</li> <li>Imaging at 0.9 and 5.0 μm</li> </ul> |

Cosmic Shadow @ Ishigaki 24-25 Nov 2018

## Primary survey camera: NIRCam (PI Marcia Rieke)

- Simultaneous dichroic imaging of 0.6 2.3 μm and 2.4 5.0 μm, over two 2.2' x 2.2' FoVs
- Wide-field Slitless spectroscopy (WFSS; R~1000) in long-wavelength
- Coronagraphic imaging



### Wide-field slitless spectroscopy with NIRCam

"Slitless" spectroscopy with grism

→ We can obtain spectra for **all** objects in the FoV **simultaneously** 



### Wide-field slitless spectroscopy with NIRCam

#### Where should we observe?

 $\Rightarrow$  Where we have the direct measurements of  $\tau_{eff} = high-z quasar fields$ 

| ID          | ZQSO | Opacity τ <sub>eff</sub>             | Absorption sys.                                              |
|-------------|------|--------------------------------------|--------------------------------------------------------------|
| J0148+0600  | 5.98 | very long, opaque<br>(τ>7) GP trough | -                                                            |
| J0100+2802  | 6.33 | high τ~3—6                           | 4 OI (5.8 <z<6.2)< td=""></z<6.2)<>                          |
| J1030+0524  | 6.31 | large variation τ~2–7                | 4 CIV (5.5 <z<6.0), (z~4.8)<="" 4="" civ="" td=""></z<6.0),> |
| J1148+5251  | 6.44 | large variation τ~3–6                | 4 OI (6.0 <z<6.3)< td=""></z<6.3)<>                          |
| J1120+0641  | 7.08 | almost saturated $\tau$              | CIV (z=6.5), MgII (z=6.4)                                    |
| PSO J159-02 | 6.35 | No data yet                          | MgII absorption                                              |

#### **Filter strategy**

# We will blindly detect star-forming galaxies at z=5-7 through strong H $\beta$ +[OIII] lines.



Short-wavelength unit Imaging in F115W and F200W Texp=3700 sec / pt. Long-wavelength unit Grism(+imaging) in F356W Texp=7500 sep

#### SW imaging and LW grism can be conducted simultaneously!

## **Filter strategy**

This combination of the three filters (0.9, 2.0, 3.6 µm) is very suited to characterize the global properties ( $M_V$ ,  $\beta_{UV}$  and  $D_{4000}$ ) of z~6 galaxies, **like the commonly-used BzK technique at z~2.** 





Cosmic Shadow @ Ishigaki 24-25 Nov 2018



Cosmic Shadow @ Ishigaki 24-25 Nov 2018

### **Exposure time and sensitivity**

| Total science<br>time | Plan                | Filter | Exposure/<br>pointing | Max. exp.<br>(x 4) | Sensitivy at 5σ<br>(point source) |
|-----------------------|---------------------|--------|-----------------------|--------------------|-----------------------------------|
| 11.1 hr / field       | SW 1                | F115W  | 3865 sec              | 4.3 hr             | 28.3 abmag                        |
| 60.5 hr               | SW 2                | F200W  | 3865 sec              | 4.3 hr             | 28.6 abmag                        |
| for six fields        | LW direct<br>images | F356W  | 537 sec               | 0.45 hr            | 27.9 abmag                        |
| overheads)            | LW Grism            | F356W  | 7730 sec              | 8.6 hr             | ~ 3e-18 erg/s/cm <sup>2</sup>     |

#### Four times the nominal exposure time for the central sweet spot!

#### Expected number of detections in the "WIDE" layer

Based on observations of UV LFs, but also very sensitive to the assumption of EW([OIII]5007).



Assumptions: Bowens+2015 UV LFs,  $M_{UV}=M_{[3.6]}$ ,  $EW_0([OIII]5007) = 600\text{\AA}$  at z=6.0,  $EW_0(H\alpha)=400\text{\AA}$  at z=4.5,  $EW\infty(1+z)^{1.2}$ (e.g., Smit+15, Labbe+13)

### **Expected number of detections**

Based on observations of UV LFs, but also very sensitive to the assumption of EW([OIII]5007).



Assumptions: Bowens+2015 UV LFs,  $M_{UV}=M_{[3.6]}$ ,  $EW_0([OIII]5007) = 600\text{\AA}$  at z=6.0,  $EW_0(H\alpha)=400\text{\AA}$  at z=4.5,  $EW\infty(1+z)^{1.2}$ (e.g., Smit+15, Labbe+13)

## When will JWST fly?

• Currently, being re-scheduled in 2021.



# Search for host galaxies of metal absorption systems by ALMA (approved) and MUSE (proposed)

#### Summary of absorption systems towards z>6 quasars



Our 6 JWST targets are highlighted.

## Blind search for [CII]158µm emission associated to the metal absorption lines at z~>5 with ALMA in our JWST target fields Approved in Cy. 5 and 6



~6 min per each pointing for  $L_{[CII]}$ ~10<sup>8.5</sup> $L_{\odot}$  (SFR~20–40 M<sub> $\odot$ </sub>/yr) at S/N=5

All proposed observations in Cya 5 have been executed. [CII]158µm of the quasars and some continuum objects are detected, but **no clear detection of** [CII]158µm are not discovered for far at a glance of the data cubes...

# Blind search for Lyα emission associated to the metal absorption lines at z~>5 with MUSE

in our JWST target fields

- Successful detections by MEGAFLOW (Schroetter+16)
- Two fields proposed currently (VLT Period 103)
- Two more fields will be proposed in P104.
- A 6-hr cube in the field of QSO J1030+0524 is public.

ALMA [CII]158μm + MUSE Lyα + HST deep images Finally, rest-frame optical grism images by JWST Multi-wavelength comprehensive search and study of absorber host galaxies

MUSE

#### Summary:

- Identification of the host systems of metal absorbers at z>4–5 will revolutionize our knowledge about baryon processes in and around galaxies.
- Our JWST program will provide a large sample of [OIII]-emitters at z~6, and highly complete search along the quasar sightlines.
- We are making big synergy of JWST + ALMA and MUSE for search and (if <del>detected</del> exit) subsequent detailed studies of absorber hosts near the EoR.