< Cosmic Shadow 2018 >

# すばるHSCによって発見された 最遠red quasar候補の分析

愛媛大学大学院理工学研究科数理物質科学専攻物理科学コース

宇宙進化研究センター宇宙大規模構造進化研究室

2018.11.25 加藤奈々子

#### INTRODUCTION

## Red quasar

- Red quasars might be in the phase of transition from hidden accretion(obscured BH growing phase) to unobscured radiation (traditional quasar), i.e. "blowout" phase



- This population is a useful probe to understand the formation and evolution of quasars and their host galaxies



## SHELLQs project

- ... Subaru High-z Exploration of Low-Luminosity Quasars project, based on the Subaru Hyper Suprime-Cam (HSC) SSP survey
- More than 80 new high-z (z > 5.7) quasars have been discovered by SHELLQs



## SHELLQs project

- ... Subaru High-z Exploration of Low-Luminosity Quasars project, based on the Subaru Hyper Suprime-Cam (HSC) SSP survey
- More than 80 new high-z (z > 5.7) quasars have been discovered by SHELLQs

W1 W2 We aim to reveal whether red quasars prevail in the early universe using this sample ▶ WISE (Wide-field Infrared Survey Explorer) - WISE performed an all-sky astronomical survey in the 3.4 (*W1*), 4.6 (*W2*), 12 (*W3*) and 22 (*W4*) µm bands Of the ~80 quasars discovered by SHELLQs, 3 were detected by WISE

## Properties of the 3 candidates from SHELLQs

|                                          |                                                                                                                                     | $_{7AB}$ (mag) $M_{1450}$ (mag) Redshift | Redshift             | AllWISE catalog magnitude      |                    |                  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|--------------------------------|--------------------|------------------|
|                                          |                                                                                                                                     |                                          | minus)               |                                | W1(AB mag)         | W2(AB mag)       |
|                                          | J0923+0402                                                                                                                          | $22.64 \pm 0.02$                         | $-26.18 \pm 0.14$    | 6.60                           | $19.06 \pm 0.07$   | $19.20 \pm 0.16$ |
|                                          | J1146-0154                                                                                                                          | $23.60 \pm 0.06$                         | $-23.43 \pm 0.07$    | 6.16                           | $20.04 \pm 0.16$   | $20.16 \pm 0.38$ |
|                                          | J1205-0000                                                                                                                          | >25.92                                   | $-24.56 \pm 0.04$    | 6.75                           | $19.98 \pm 0.15$   | $19.65 \pm 0.23$ |
|                                          | 10<br>0<br>0                                                                                                                        | 402 '(z~6.6)                             | Math Mark            | MALL MANA                      | MMMM               |                  |
| /cm <sup>2</sup> /A)                     | 2 J1146-0                                                                                                                           | 154 (z=6.16)                             |                      |                                |                    |                  |
| s/b.                                     | o HAMMANA                                                                                                                           | Mul Month M                              | IN ME IMA WAA AM AMA |                                | VAN AN AN AN AN AN | //////WI         |
| F <sub>A</sub> (10 <sup>-18</sup> erg/s, | 0<br>4<br>1<br>1<br>0<br>4<br>1<br>1<br>0<br>4<br>1<br>1<br>0<br>4<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <u>Mac Man AM</u><br>000 (z~6.7–6.       | 9)                   | BAL -                          |                    |                  |
| F <sub>Å</sub> (10 <sup>-18</sup> erg/s, | 0<br>2<br>1<br>1<br>0<br>7500                                                                                                       | 000 (z~6.7–6.<br>8000                    | 9)<br>9)             | BAL -<br>Mindul Mindul<br>9000 | 9500               | 10000            |

## Possible flux contamination checked with the HSC image

- nearby objects can contribute to WISE flux



## Possible flux contamination checked with the HSC image

- nearby objects can contribute to WISE flux



( Top : HSC image Bottom : WISE image (W1) /

## Possible flux contamination checked with the HSC image

- nearby objects can contribute to WISE flux



To recover the intrinsic flux,

we modeled the WISE images with

(quasar and nearby objects in HSC) × WISE PSF

( Top : HSC image ( Bottom : WISE image (W1) )



## **Reproduced the WISE images with multiple PSFs**



## Broad band SED fitting

SED models

- Left : quasar (Selsing et al. 2016) + SMC extinction (Pei 1992)
- Right : quasar (Selsing et al. 2016) + galaxy (Coleman et al. 1980)



#### RESULT of J0923+0402



|    | decomposed flux fraction |                |  |
|----|--------------------------|----------------|--|
|    | quasar                   | N1             |  |
| W1 | $59 \pm 0.2\%$           | $41 \pm 0.2\%$ |  |
| W2 | $70 \pm 2\%$             | $30 \pm 2\%$   |  |

#### Reproduced the object by PSF



#### Broadband SED fitting



#### RESULT of J1146-0154



|    | decomposed flux fraction |              |                 |  |  |  |
|----|--------------------------|--------------|-----------------|--|--|--|
|    | quasar                   | nearby:1     | nearby:2        |  |  |  |
| W1 | $31 \pm 2\%$             | $47 \pm 7\%$ | $22 \pm 5\%$    |  |  |  |
| W2 | $51 \pm 1\%$             | $49 \pm 2\%$ | $0.5 \pm 0.4\%$ |  |  |  |

#### Reproduced the object by PSF



#### RESULT of J1205-0000



## Possible red quasar ! decomposed flux fraction

|    | quasar          | nearby:1        | nearby:2       |  |  |
|----|-----------------|-----------------|----------------|--|--|
| W1 | $70 \pm 0.04\%$ | $6 \pm 0.8\%$   | $24 \pm 0.8\%$ |  |  |
| W2 | $57 \pm 0.09\%$ | $0.3 \pm 0.6\%$ | $43 \pm 0.7\%$ |  |  |

#### Reproduced the object by PSF





#### SUMMARY

## Searching for high-z red quasars

- The red quasar candidates were selected with a combination of the HSC and WISE data
- Reproduced the WISE images with multiple PSFs
- Constructed the broadband SEDs of each candidate and derived the color excess *E*(B -V)
- $\rightarrow$  Confirmed that one quasar is most likely a red quasar

## Future prospects

- What's the interrelation? Red quasar vs. BAL
- We'll conduct the same analysis for more luminous sample



Comic Shadow 2018 (11.24-25, 2018@石垣島)

## Possible red quasar

