Galactic diffuse molecular gas detected in absorption toward ALMA calibrator sources

as a compilation of

- Ando, R. et al. 2016, PASJ, 68, 6
- Ando, R. et al. 2018, submitted to ApJ

Yuri Nishimura

IoA, Univ. of Tokyo / NAOJ

Outline of this talk

Introduction

Motivation to study diffuse gas

Detections of Galactic diffuse molecular gas

Data analysis: ALMA calibrator sources

Results

Implication to the physical condition

Excitation state of diffuse molecular gas

Sensitive ALMA observations

Results

Relation to the extragalactic spectra

Summary

Motivation to study diffuse gas

Galactic molecular absorption system

ALMA Calibrator sources

- available in ALMA archive
- may include absorption systems?

Diffuse molecular ISM

- probed with absorption lines toward bright background sources
- important as an initial condition of dense molecular gas
- may contribute appreciably to, or even dominate, the total gas

Motivation to study diffuse gas

Molecular lines at millimeter wavelengths

- interstellar molecules: CO, HCN, HCO+, CCH, CS, SO, ...
- rotational spectra of interstellar molecules
- ground state transitions (J = 1-0) in ALMA Band 3 ($\lambda \sim 3$ mm)

For example...

- determination of isotope ratio of fundamental elements
 e.g., Lucas & Liszt 1998
- probes of the molecular hydrogen column density e.g., Gerin+ 2018
- extending the molecular inventory
 e.g., Liszt+ 2014, 2015, 2018

This study: detection of absorption system toward ALMA calibrators

→ characterization of chemical and physical properties

Outline of this talk

Introduction

Motivation to study diffuse gas

Detections of Galactic diffuse molecular gas

Data analysis: ALMA calibrator sources

Results

Implication to the physical condition

Excitation state of diffuse molecular gas

Sensitive ALMA observations

Results

Relation to the extragalactic spectra

Summary

Data analysis: ALMA calibrator sources

ALMA archive

Selection criteria

- available in the ALMA archive prior to late 2014 (i.e., Cycle 0 data)
- continuum flux > 0.2 Jy at Band 3, 4, 7
- frequency resolution < 1 MHz

36 ALMA calibrator sources

analysis

4 Galactic absorption systems

Object	Coordinates (<i>l</i> , <i>b</i>)	Band	Detected molecular species
J1717-337	(352.7, 2.4)	3	c−C₃H₂, HCS⁺, H¹³CN, HCO, H¹³CO⁺, HN¹³C, CCH, HCN, HCO⁺, CS
J1625-254	(352.1, 16.3)	3, 6	c-C₃H₂, CCH, HCN, CO
J1604-446	(335.2, 5.8)	3, 6, 7	CS, CO
NRAO530	(12.0, 10.8)	3, 6	HCO , H ¹³ CO ⁺ , SiO, CCH, HCN, HCO ⁺ , CO

Detections of Galactic diffuse gas: Results

Example: J1717–337

- newly detected molecular absorptions!
- multiple velocity components

Implication to the physical condition: HCO

HCO absorption systems

- B0415+379 = 3C111
- B2200+420 = BL Lac
- W49 (Liszt+ 2014)
- J1717-337
- NRAO530

(Ando+2016)

HCO — Formyl radical

Formation of HCO

O +
$$CH_2 \rightarrow HCO + H$$

(Gerin+ 2009)

environment where C⁺ and H₂ coexist = Photon dominated region (PDR)

C+ +
$$H_2 \rightarrow CH_2^+ + h\nu$$

 $CH_2^+ + H_2 \rightarrow CH_3^+ + H$
 $CH_3^+ + e^- \rightarrow CH_2 + H$
(Schenewerk+ 1988)

HCO: as a PDR tracer

HCO/H¹³CO⁺ column density ratio

• H¹³CO⁺: as a total H2 column density

- (Gerin+ 2009)
- high HCO/H¹³CO⁺ indicates the presence of UV radiation field
 - → Galactic diffuse gas is in **PDR-like environment**!

Is diffuse molecular gas REALLY in equilibrium with CMB?

Outline of this talk

Introduction

Motivation to study diffuse gas

Detections of Galactic diffuse molecular gas

Data analysis: ALMA calibrator sources

Results

Implication to the physical condition

Excitation state of diffuse molecular gas

Sensitive ALMA observations

Results

Relation to the extragalactic spectra

Summary

Excitation state of diffuse gas

Sensitive ALMA observations

- ALMA Cycle 3, 2015.1.00066.S (PI: Ando)
- Target systems: J1717–337, J1625–254, NRAO530
- **Band 6** ($\lambda \sim 1.2 \text{ mm}$)
- Observing time: **3.2 hours** (on source ~ 0.4 hours / source)
- Target lines:

higher-*J* transitions of C₂H, SiO, H¹³CO⁺, HCO, H¹³CN, CS, *c*-C₃H₂

Multi-line analysis: rotation diagram

$$J = 1-0$$
 (Band 3) & $J = 3-2$ (Band 6)

- Excitation temperature
- Column density

Results: non-detection

Upper limits on the excitation temperatures

T_{ex} is lower than 10 K

- The excitation temperatures of multiple molecules are constrained.
- In spite of the PDR-like chemistry, the temperature is low.
- $T_{\rm ex}$ of common PDR tracer CCH is < 5 K in all three systems.

Excitation temperatures (K)

	J1717-337	J1625-254	NRAO530
НСО	< 8.7	< 15.0	—
H ¹³ CO ⁺	< 9.6	< 10.8	<u>—</u>
H ¹³ CN	< 8.2		—
CS	< 7.2	< 5.3	<u>—</u>
ССН	< 4.3	< 4.4	< 4.6
<i>c</i> −C ₃ H ₂	<u>—</u>	< 8.7	
SiO	—	< 13.9	—

Is diffuse molecular gas REALLY in equilibrium with CMB?

Yes, we confirmed the validity of the common assumption!

We can derive column densities without assumption.

"Diffuse gas is in equilibrium with CMB"

Abundances of molecules

- We assumed $T_{\rm ex}$ of from 2.73 K (= CMB) to the upper limit.
- The uncertainty is only a factor of several.
- Column densities in the literatures are not need to be corrected.

Column densities (cm⁻²)

	J1717-337	J1625-254	NRAO530
НСО	(0.2-1.1)×10 ¹³	(0.4-7.3)×10 ¹²	
H ¹³ CO ⁺	(0.9-6.2)×10 ¹¹	(0.2-1.5)×10 ¹¹	<u>—</u>
H ¹³ CN	(1.7-8.8)×10 ¹¹		<u>—</u>
CS	(2.7-6.8)×10 ¹²	(1.5-2.4)×10 ¹²	<u>—</u>
ССН	(4.0-7.3)×10 ¹³	(1.0-1.9)×10 ¹³	(0.5-1.1)×10 ¹⁴
<i>c</i> −C ₃ H ₂	<u>—</u>	(0.3-1.7)×10 ¹²	
SiO	 -	(0.1 – 1.0)×10 ¹²	 -

Comparison with other sources

Comparison with extragalactic sources

Similar to kpc-scale extragalactic molecular composition

 Recent molecular-cloud-scale (a few 10 pc-scale) imaging toward Galactic molecular clouds revealed that emission from diffuse cloud peripheries is not ignorable or dominant. (Nishimura+ 2017, Pety+ 2017, Watanabe+ 2017)

- We need to be aware that "dense gas tracers" are also in diffuse gas.
- To scrutinize nuclear activities, resolved observations are necessary.

Diffuse gas contributes to, or even dominate the cloud

Future prospects

To increase the number of molecular absorption systems

- Galactic and high-redshift molecular absorption systems
- ALMA archive = a great treasure trove!

To use them as the cosmic "chemical" ladder

Summary

Chemical richness of Galactic diffuse gas is of great interest.

4 absorption systems / 36 candidates are detected.

HCO absorption lines toward 2 systems are newly detected.

Abundant HCO indicates PDR-like chemistry in diffuse gas.

To constrain the excitation state, **ALMA Band 6 observations** were conducted.

The excitation temperatures are found to be < 10 K.

This result supports the widely accepted assumption (i.e., diffuse gas is in equilibrium with CMB).

Similarity to the nearby galaxies observed at kpc-scale beam reminds us the importance of spatially resolved observations.