Using Quasar Absorption Lines to Probe Cold Gas at High-z Galaxies

Siwei Zou

Institut d'Astrophysique de Paris Sorbonne Université Kavli Institute of Astronomy and Astrophysics Peking University

<u>P.Petitjean, P.Noterdaeme</u>, C.Ledoux, J.-K. Krogager, H.Fathivavsari, R. Srianand, S. López

zousiwei@pku.edu.cn

Cosmic Shadow 20181124

MOTIVATION

What are the gas properties to form stars at high redsfhit?

How to trace this kind of gas efficiently?

WHAT IS A QUASAR

- VERY BRIGHT point source
- ► Structure:
- SMBH and its accretion disk
- Broad-line-region ~1 pc
- Narrow-line-region >10 pc

Broad

credit: NASA

WHAT IS A QUASAR

- VERY BRIGHT point source
- ► Structure:
- SMBH and its accretion disk
- Broad-line-region ~1 pc
- Narrow-line-region >10 pc

credit: NASA

DETECTION

- Sloan Digital Sky Survey
- 2.5-m telescope at Apache Point
 Observatory in south east New Mexico.
- The survey starts in 2000.
- Deep color images covers 1/3 sky
- Spectra of more than 3000,000 astronomical objects

www.sdss.org

DETECTION

- Sloan Digital Sky Survey for quasars survey
- Baryon Oscillation Spectroscopic Survey (BOSS)

Lyman-a forest spectra of 160,000 quasars at redshifts 2.2 < z < 3

► eBOSS

What is the evolution of bright quasars of all luminosities out to

redshift z = 3?

Pâris et al, 2017 (DR14)

573,000 quasars

www.sdss.org

ABSORPTION LINES

Intrinsic Absorption lines:

Provide information of the quasar and the host galaxy

Intervening Absorption lines

- The primeval hydrogen generate different colors
- Intervening gas absorbed
- the emission at different redshift
 - --> The final cumulative

absorption spectrum

ABSORPTION LINES

Intrinsic Absorption lines: Provide information of the quasar and the host galaxy

Intervening Absorption lines

- column density

LY-A ABSORBERS

Ly-a forest: log N(HI) < 17.2
Lyman Limit Systems:
17.2 < log N(HI) < 20.3
Damped Ly-a systems: log N(HI) > 20.3

LY-A SYSTEMS

► Disk

► Damped Ly- α systems (DLA) log N(HI) > 20.3

- contains most of the neutral hydrogen in the Universe
- easy to recognize

Noterdaeme et al. 2007

DLA

► HI mass density

Neeleman et al. 2016

Madau & Dickinson 2014

LY-A SYSTEMS

► Disk

> Damped Ly-a systems (DLA) $\log N(HI) > 20.3$

- contains most of the neutral hydrogen in the Universe
- easy to recognize
- associated with metal lines

Noterdaeme et al. 2007

DLA

- ► Metallicities
 - $\mathbf{Z}=\!\log$ (N(X)/N(H))
 - log $(N(X)/N(H))_{\odot}$
- Mean metallicity evolution
- $Z = (-0.26 \pm 0.07) \times z (0.59 \pm 0.18)$
- —> Metallicity measurements are **robust** in absorption

Rafelski et al. 2015

Data from: Walter et al. 2008 (HI + CO), Knapen et al. 2004, Kennicutt et al. 2011

Data from: Walter et al. 2008 (HI + CO), Knapen et al. 2004, Kennicutt et al. 2011

Data from: Walter et al. 2008 (HI + CO), Knapen et al. 2004, Kennicutt et al. 2011

ISM phases			NGC 6946
warm ionized	T ~8000 K, n~0.3 cm-3 f > 15%		
warm neutral	T > 6000 K, n ~ 0.3 cm-3, f > 30%	15	
cold neutral	T ~ 100 K, n ~ 20 cm-3 f ~ 2 - 4%	10 -	
molecular	I ~ 20 К, n > 1000 ст-3 f < 1%	60° 00' 20 ^h 36 ^m 35 34	CO 20 ^h 36 ^m 35 34 α (J2000)

Data from: Walter et al. 2008 (HI + CO), Knapen et al. 2004, Kennicutt et al. 2011

- Stars are formed in cold, shielded gas, which is dusty and molecular rich.
- In order to understand the evolution of star-formation, we also need to study the evolution of cold gas.
- The neutral gas, as probed by most DLAs is found to be very diffuse.
- Much more difficult to observe cold gas at high-z which normally lies in the disk of galaxies — a new tracer is needed,

WHY CI?

- > New tracer $-(C_I)$ which is directly connected to cold gas
- Indeed, CI only survives in shielded gas. The ionization energy of CI (11.26 ev) is below the neutral hydrogen ionization energy (13.6 ev).
- Since there are very few samples using C I as the tracer of cold gas in the previous studies, therefore a large database is needed.

SAMPLE

- Large database SDSS –DR7 (Abazajian et al. 2009),
- > Redshift range $1.5 < z_{abs} < 3.1$
- C I λ λ 1560,1656 doublets are used in selection.
- The completeness limit of our survey is $Wr_{lim} (\lambda 1560) \approx 0.4 \text{ Å}.$
- A complete sample of 66 C I absorbers are selected from 41696 QSOs, see details in Ledoux et al. 2015 (A&A, 580,8).

Ledoux et al. 2015 Red histograms: CI systems Blue-hased histograms: Normal DLAs in Noterdaeme et al. 2009b

SAMPLE

- Large database SDSS –DR7 (Agazajian et al. 2009),
- ▶ Redshift range $1.5 < z_{abs} < 3.1$
- A complete sample of 66 C I absorbers are selected from 41696 QSOs, see details in Ledoux et al. 2015 (A&A,580,8).
- > C I $\lambda \lambda$ 1560,1656 doublets are used in selection.

SUBSAMPLE

► We re-observed 17 QSOs using VLT-Xshooter

VLT-Xshooter is a multi-wavelength (3000-20000 Å) medium resolution spectrograph which has three arms covering the UVB(3000-5595 Å), VIS (5595- 10240 Å) and NIR (10240-24800 Å) wavelength ranges.

> Due to the absorption redshift range, NaI ($\lambda \lambda 5891,5897$), CaII ($\lambda \lambda 3934, 3969$) can be detected. (draw the difficulties)

NAI AND CAII

 First systematic study of Na I and CaII at high-redshift: NaIλλ5891,5897 and CaII λλ3934,3969 can be detected with Xshooter in the NIR wavelength range.

MEASUREMENTS

- Decomposition of C I absorption (show a
- ▶ figure of CI, CI* and CI**
 —>measurements of
 - ${}^{3}P_{0}$, ${}^{3}P_{1}$, and ${}^{3}P_{2}$

volume density ~ 10-100 cm-3

MEASUREMENTS

- Decomposition of C I absorption
- EW of C I, NaI and CaII,
 MgII and MgI
- Metal Column densities.

RESULTS

► Metallicity

left panel : **red** stars: CI-selected [Zn/H]

right panel:

Metallicity distribution function orange histogram: Metallicity distribution in Rafelski+ 2012 red histogram: CI-selected metallicity

Zou et al. 2018

MEASUREMENTS

- Decomposition of C I absorption
- EW of C I, NaI and CaII,
 MgII and MgI
- Metal Column densities.
- ► Depletion

- highly depleted:FeII, CrII
- less depleted: ZnII

MEASUREMENTS

- ► Decomposition of C I absorption
- EW of C I, NaI and CaII, MgII and MgI
- ► Metal Column densities.
- ► Extinction
- upper: the extinction model without the 2175 bump, and lower one is the the model with the bump, which means there is the 2175 bump in this absorber
- 4 systems in the subsample with 2175 bump.

Zou et al. 2018

RESULTS

► NaI and CaII

Green line: Murga+ 2015, CaII and NaI study in the local universe, red line is the extrapolation at higher reddening

Blue line: W(NaI)- E(B-V) empirical relation in Poznanski et al. (2012)

RESULTS

► NaI and CaII

v^{1.4}

Green line: Mu CaII and NaI stu local universe , : the extrapolatio reddening The w(CaII) and w(NaI) in CIselected systems are remarkably large, even larger than seen in our Galaxy

Murga+ 2015

/ild+ 2005

- CI absorbers are probably closely associated to high-z galaxies

Blue line: W(N empirical relation in Poznanski et al. (2012)

Zou et al. 2018

DUST ATTENUATION

 $\kappa_{\rm X} = 10^{[\rm X/H]} (1 - 10^{[\rm Fe/X]}).$

Red: Fell in the dust of CI-selected sample Blue: Fell in the dust in Vladilo et al. 2006

Zou et al. 2018

PROJECT II: MOLECULAR GAS

P. Noterdaeme, C. Ledoux, S. Zou, P. Petitjean, R. Srianand, S. Balashev, S. López 2018

MOLECULAR GAS

PROJECT II: MOLECULAR GAS

P. Noterdaeme, C. Ledoux, S. Zou, P. Petitjean, R. Srianand, S. Balashev, S. López 2018

MOLECULAR GAS

PRE-SUMMARY

- > What are the gas properties to form stars at high redsfhit?
 - Higher metallicity compared to normal DLA
 - nH in the range of 10-100 ${\rm cm}^{-3}$
 - High dust content
 - Larger W(CaII) and W(NaI) than that in the Galaxy, which probably
 - indicates that CI systems are closely associated to high-z galaxies
 - Extremely large W(MgII)
 - High dust-to-gas ratio

- How to trace this kind of gas efficiently?
 - CI traces molecular gas very efficiently

PRE-SUMMARY

CONCLUSION

- I have analyzed the properties of a unique sample of CI-selected absorbers at high-redshift using the X-shooter spectrograph on the VLT.
- The metallicity of the C I-selected systems are close to solar, which is 10 times higher than that in the typical DLAs. The metallicity and dust-depletion are in turn more similar to what is seen in our Galaxy, despite CI-systems being observed when the Universe was about 10 Gyr younger.
- ➤ We detected 9/17 CaII H&K doublets and 10/17 NaID lines. We showed that dust attenuation is strongly correlated with w(CaII), similar to what is seen locally.
- CI absorbers are probably more closely associated to galaxies than other classes of absorption systems.
- These systems are not quiet! The observed kinematics of MgII lines in our sample are larger than that of regular DLAs, around 400 km/s. This implies that CI systems are strongly disturbed. This could be the signature of star formation activity within the associated galaxies.
- Since the dust content is remarkably high in the CI-selected sample, we predicted and then verified that H2 should be detected in every CI-system. This supports again our proposal that CI traces the cold gas efficiently.

CONCLUSION

ON-GOING PROJECTS

with Prof. Jiang Linhua in KIAA

- ➤ CI at z ~ 5 6
- High-z star forming galaxies (Ly-alpha emitters and Lyman Break Galaxies) at z > 5

- Subaru Prime Focus Spectrograph (PSF) —> sensitive to galaxies at all redshift even to the galaxies formed at the billions years of the Big Bang
 - inflows and outflows circle

Seeking for simulation collaboration !

PROSPECTS