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2. Model-independent decomposition into variable and stable spectra (The C3PO method) 

3. Discoveries of soft and hard stable components  
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6. Conclusion  

•  Applying the C3PO method to a ~0.5−3 keV band, we obtained a result that several types of AGNs  
  generally had a soft stable spectrum shown in Fig. 4(a)[4,5].  
• In a ~3−45 keV band of many AGNs, not only a reflection+Fe-K but also a hard stable component  
  are needed to explain the stable component obtained by the C3PO method as shown in Fig. 4(b)[3,6].   
• Most part of the well-known “soft” and “hard X-ray excess” structures in AGNs are considered to  
  be due to the discovered soft and hard stable components. 

1. Introduction 

5. Collaboration with optical telescopes  

• A primary emission in X-ray signals from Active Galactic Nuclei (AGNs) has been assumed to be a single Power  
  Law (PL) as shown in Fig. 1, which is based on an assumption that a Compton corona is single and uniform.  
• On the assumption, all spectral structures deviating from the PL are regarded as products by complicated  
  absorptions or reflection due to materials surrounding a central super massive black hole (SMBH) [1,2].  
• Although this interpretation for the primary X-ray emissions has been known to be too simple to explain  
  a central engine of AGNs, there has been no ways to rightly determine primary-continuum shapes.  
• Without the understandings of them, we can not discuss about a physical condition around SMBHs correctly.  

• To examine the primary-continuum shapes, first, we developed a novel timing method.   
• We divided a 2−45 keV band of NGC 3516 observed by Suzaku in 2009 into 17 finer bands, and  
  made 16 Count-Count Plots (CCPs) like shown in Fig. 2.  
• All of the CCPs show linear correlations which can be explained by a function of y=ax+b.  
• The 16 slopes can be converted into a variable spectra, while the 16 offsets into a stable spectra, as  
  shown in Fig. 3. Hereafter, we call it Count-Count Correlation with Positive Offset (C3PO) method.   

4. Variability of each component  

• We developed a novel timing method to decompose a X-ray  
  signal into variable and stable components, model- independently.  

• With the method, it was revealed that AGNs generally have multiple   
  primary components, inversely of the previous assumption. Thus,  
  a primary continuum of AGNs is commonly concave. 

• The soft and hard X-ray excess structures in AGNs are possibly  
  formed by the primary components.  

• To examine primary-component emitting regions, we have proposed   
  multiple Suzaku observations, followed up by optical telescopes.  

• Figure 5 shows a result of the C3PO application to the 2005 Suzaku  
  data of NGC 3516. It had both soft and hard stable components.  
• From a comparison with the 2009 (Fig. 3), both the stable spectra  
  must have decreased during four years, independently of the PL. 
 Both are possibly primary components other than the PL.  

7. Reference  

Fig. 2. Three of the 16 Count-Count Plots with a binning of 5 ks (which are equivalent to Flux-Flux Plots). Abscissas is 
NXB-subtracted count rate in 2-3 keV, while ordinate gives those in higher energy bands. 

Fig. 5. Same as Fig. 3, but of the 2005 Suzaku data of NGC 3516. The stable  
component consists of a reflection+Fe-K (blue), soft (purple) and hard (red) ones.  

Fig. 3. A variable (green), stable (purple) and time-averaged spectrum (black), 
reproduced by a PL (green),  reflection+Fe-K (blue), and sum of them, respectively. 

Succeeded in decomposing the variable PL and  
the stable disk reflection, without any models! [3]	
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Fig. 1. A generally-known X-ray spectrum of type I AGNs.  
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Fig. 4. Same as Fig. 3, but of the Suzaku data of (a) Mrk 509 and (b) NGC 3227. The stable component of Mrk 509 is 
reproduced by a soft PL (purple), while that of NGC 3227 by a reflection+Fe-K (blue) and a hard PL (red).  
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Fig. 6. Primary-continuum emitting regions shown by [7,8]. 
There are no ideas for a hard-component generating region. 
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• Although there are several reports like Fig. 6,  
  the emission regions of the soft and hard com-  
  ponent have not been understood yet.  
• Primary emissions should have a variation  
  timescale related with a distance between the  
  emitting region and a SMBH, and synch with  
  optical signals if generated near an accretion  
  disk as [9]. 

convert	


To study the primary emission regions, we proposed multiple Suzaku observations  
of NGC 3516 in AO-8, which all will be followed up by several optical telescopes.  
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