Optical~MR Survey at NEP field Nagisa Oi (JAXA/ISAS)

H. Matsuhara, T. Wada, T. Takagi, K. Murata, S. Churei (JAXA/ISAS), S. Oyabu (Nagoya Univ.), H. Hanami (Iwate Univ.), Y. Oyama (ASIAA), T. Goto (Univ of Copenhagen), T. Miyaji (UNAM), M. Malkan (UCLA), and other NEP member

Introduction | Galaxy-SMBH relationship at z=1~2

- Super Massive Black Holes (SMBHs) mass have tight correlations with their host galaxies' properties in local universe, suggesting the process of SMBHs growth make an important influence on the galaxy-formation history.
 - Star formation (SF) properties at $z=1\sim2$ are dramatically changed from those at z=0 (Hopkins et al. 2006, Elbaz et al. 2007).
 - Both relatively massive SMBHs and galaxies are rapidly-grown at $z=1\sim2$ (Ueda et al. 2003, Hopkins & Beacom 2006).
 - The more active SF and Active Galactic Nuclei in galaxies, the more dust the galaxies have (Imanishi et al, 2010).

Fig.1 AKARI/IRC 9 filters (2-24µm)

 \star To understand the galaxy-formation history, study the galaxy-SMBH relationship at z=1~2 using infrared wavelength is essential.

AKARI NEP-Deep survey

AKARI Satellite (Operation : $06/02/22 \sim 11/11/24$)

IRC: near-mid IR Camera Continuos wavelength coverage --between 2-24µm with 9 filters

AKARI NEP survey

2μm 24µm Pointing observation over 700 times toward North Ecliptic Pole (NEP) using the IRC

- Deep survey : 0.5deg², 100μJy@15μm (Image region) •Wide survey : 5.8deg², 130µJy@15µm (Green region)
- NEP-Deep survey field has continuous IR photometric deep data (100µJy@15µm) within larger (0.5deg²) area comparison with other deep survey.
- 28,613 AKARI sources including 9,559 MIR sources, with optical counterpart (Murata et al. in prep).

Imaging	Observatory/Instrument	
X-ray	Chandra	
UV	GALEX	
Optical	Subaru/S-Cam	
	CFHT/MegaCam	
NIR	CHFT/WIRCam	
	KPNO2.1m/Flamingos	
FIR	Herschel/SPIRE	
Submm	JCMT/SCUBA-2	
spectroscopy	Observatory/Instrument	
Optical	Subaru/FMOS	
	Keck/DEIMOS	
	MMT/Hectspec	

Current status

(1) We calculate photoz for optical sources in the NEP-Deep field using LePhare code (Oi et al. in prep).

- Model: Averoin, modified empirical CWW templates.
- Comparison the photoz with specz we observed. $\rightarrow \Delta z/(1+z) \sim 0.052$

(2) The photoz distribution up to $z=2^{600}$ 5000 • We found that over 20,000 ₩ 4000 sources at $z=1\sim2$ are detected *ž* 3000 (Oi et al. in prep).

(3) We find QSO candidates using optical color-color -diagrams (Finlator et al. 2000) • (u^*-g') vs $(g'-r')^{*1}$ • stellarity > 0.8 \rightarrow 127 candidates (z~0) *1: we have assumed g' \approx g*, r' \approx r*

(4) We find QSO candidates

• $F_{(S9W)}/F_{(Ks)}:F_{(L18W)}/F_{(S9W)}$

 \rightarrow 1,152 candidates (z~0-3)

(Oyabu et al. 2011)

QSO 100 using IR color-color-diagrams $\frac{\delta}{0}_{10}$ candidates 18W)/

1.5 photoz Fig. 4 : Histogram of photoz for optical sources in NEP-Deep field. (Oi et al. in prep)

sources

Fig. 6 : $f(9\mu m)/f(Ks)$ vs $f(18\mu m)/f(9\mu m)$ color-color-diagram. QSOs at $z=0\sim3$ could be in the pink square region.

Future work

■ SED fitting the QSO candidates ①stellar component (visible)

(2)host dust component (NIR) \longrightarrow AGN activities

③PAH component (MIR)

→ SF rate

(4) cold dust component (FIR) —> amount of dust

at each of redshift between z=1-2, Number density of buried AGN Spatial distribution of buried AGN and star-forming galaxy **Study of the Relationship** between AGN and SF at z=1-2. ■ Reference •Elbaz et al. 2007, A&A, 468, 33 •Finlator et al. 2000, AJ, 126, 2615 •Hopkins et al. 2006, ApJ, 651, 142, •Hopkins & Beacom 2006, ApJ, 651, 142 •Imanishi et al, 2010, ApJ, 709, 801 •Oyabu et al 2011, A&A, 259, 122 •Ueda et al. 2003, ApJ, 598, 886 •Oi et al. in prep •Murata et al. in prep