Status of HSC Data Analysis Software

12.18.2012 HSC-AGN WS@Ehime-U H. Furusawa (NAOJ)

1. HSCANA

- Scope
 - Production of calibrated images and catalogs
 - Distribution of data products to Co-l's
 - Assisting SSP observation
- Team
 - NAOJ, Princeton, K-IPMU/U-Tokyo, KEK
 - Takata, T., Yamada, Y., Koike, M., Okura, Y., Yamanoi, H., Lupton, R., Price, P., Bosch, J., Miyatake, H., Bickerton, S., Yasuda, N., Mineo, S., Furusawa. H, ...

2. Software Components

- Platform, Framework (on CentOS Linux)
 - LSST stack
 - \rightarrow classes/func for data access & manip. (c.f., IRAF)
 - Python, C++ (SWIG)
 - \rightarrow building analysis tasks, pipeline
 - MPI, Torque (OpenPBS)
 - \rightarrow parallelization
- HSC Pipelines
 - Reduction of CCD by CCD images
 - Mosaic-Stacking
 - Catalog Creation

3. Deliverables

Images

Products Sizing

85MB / CCD

- Corrected Single CCD Images
 - WCS, Magnitude zeropoint
 - Variance, Mask Map
 - PSF Map
- Mosaic-Stacked Images per Unit-area 10GB / Stack / 1.5² sq.deg
 - WCS, Magnitude zeropoint
 - Variance, Mask Map
 - PSF Map
- Catalogs
 - Single CCD Catalogs \rightarrow catalog db ----- 3 million row / sq.deg

 - Multi epoch?

6

4. Snapshots from CCD-by-CCD Analysis

- PSF mapping
- CR / crosstalk correction & Mask values
- Photometric calibration

Processed Image Format

HDU0: Header only HDU1: Science Image

Mapping Point Spread Functions

- SDSS approach of PSF determination by PCA
- Spatial variation in PSF fitted by polynomials

Eigen PSF images

Hironao Miyatake Paul Price

Reconstructed PSFs

Photometric Calibration

- Calibration by SDSS stars
- To 1-2% scatter in ideal data (dense stellar field with expt = 30s) after color term correction
- Can be to 4-5% in deep image (in z band)

5. Mosaic-Stacking

- Astrometric Calibration
 - Improves WCS of each CCD image

• Photometric Calibration

- Determines flux scaling (magzero) of each CCD image

Diagnostics of Mosaicing Result

(1) Fitting scatter of astrometric alignment

0.01 arcsec rms (Internal) 0.03-0.04 arcsec rms (External to sdss)

(2) Fitting scatter of flux scaling

0.01 mag (Internal) 0.03-0.04 mag rms (External to sdss) after flux correction applied

Flux Correction Pattern by Mosaicing

hscMosaic can provide additional flux correction to magzero in each CCD

SCam engineering data 30sec x 18 exposures at stellar dense field (~600stars / chip)

0.00

4000

Stacked Image

- Suprime-Cam
 z-band
- 575 shots
 - 16 hrs (2FOVs),
 8hrs (2FOVs)
- Time
 - 2hrs / mosaic
 - 5days / stack

(single thread)

Comparison

- Exam of results just started, comparing with SDFRED
 - COSMOS, UDS, HDF ...
 - Depth comparable, with noise less correlated?

hscMosaic

SDFRED

6. Catalog Creation Forced Photometry

 Detection on one image & Measurements in each image → Single multi-band catalog

Catalog Creation

- Single-CCD Catalogs (*) Advanced / Challenging Items
 - Direct measurements per each band, each frame
 - (*) Forced photometry on each frame
- Multi-band catalogs for stacks
 - Forced photometry on stacked images
 - (*) χ^2 -Image detection
 - (*) Consideration of multi-epoch data
 - HSC standard catalogs for HSC bands
 - First, broad bands only, then, narrow bands

7. Production of Mosaic-Stack + Catalogs in SSP

- On each pre-defined 'SkyTile' (~ 1.5 deg wide)
- Corrected frames TAN projected onto SkyTile's
- Full stack & catalog production in 6 – 12 months interval (TBD)? in stable operation phase

8. Ongoing/Remaining Concerns

- Measurement parameters
 - e.g., Kron-mag, Petrosian-mag, Shape-fit parameters (r_eff, etc..)
- Reliable sky subtraction
- Optimization of mosaic, stacking (especially for deep, many frames)
- Multi-band catalog creation with forced photometry & chi-square detection
- Exam of images & catalogs (calib., accuracy of measurements)
- Procedure of SSP data release production
- Support of general observation

9. Assisting SSP observation

- Overview of Hilo onsite system
 - realtime quick analysis for Data evaluation (QA) & visualization
 - data screening by QA database
- Prototype of progress map

Plots from Seeing Measurements

Selected PSF candidates Mode is adopted for robust FWHM PCA modeled PSF

PSF mapped in Grids Both with stack of sources & with PCA models

Tiled QA Figures

Demonstration with HSC simulation data

QL of pverscan-subtracted images

Ellipticity of PSF-like sources mapped on FQY

Prototype of Realtime Quality Monitor

Temporal change in magnitude zeropoint, seeing, skylevel ...

Timing of Onsite QA

- Analysis cycle of 2.5 minutes after data arrival
- Minimalist pipeline for QA, with localdisk writes

 \rightarrow approaching targeted ~ <2min

Detection	Disk Write	FrameAna (CCD-by-CCD)	ExpAna (PostProcess)	Total
Bright + Deep Sources (10sgm, 2sgm)	NFS	03m45s	00m25s	04m45s
Bright Sources (10sgm)	Local	01m45s	00m25s	02m30s

Tools for Survey Progress Check

• Visualizing achievements in each survey area

per HEALPix index

10. Products Distribution

- Archive Database
 - Shares analysis DB & onsite-QA DB
 - All or part of products data & database will be mirrored at core institutes
- Portal web, user interface to access products
 - Image data through DataArchiveServer (DAS)
 - Catalogs through CatalogArchiveServer (CAS)

User Portal for Data Retrieval (DAS)

Suprime-Cam Frame Search [DEMO]

Sear

Frame	Exposure	Mosaic										
filter												
g	iz	у										
Observ	ation Date											
⊛ Unive	rsal Time 🔍	Hawaiian Stand	lard Time									
D	ate		Time									
From: 2	012-08-11	(yyyy-mm-dd)	00:00:00.0	(hh:mm:ss.s 24h)								
То: 2	012-08-11	(yyyy-mm-dd)	23:59:59.9	(hh:mm:ss.s 24h)								
						Num	ber of	f Fram	es: 490)		
Search	Mode					No≎	img	cat	mat	psf	Frame ID	\$
© Radial	⊛Box					1					SUPA01355625	3
						2					SUPA01355855	33
					_	3					SUPA01355927	33
RA:	328	(degre	e) DEC:	0	(degree)	4				2	SUPA01355491	3
TAT: Jal.	6000	(arcm	in) Hoight:	40	(arcmin)	5				1	SUPA01355683	31

Prototype by H. Yamanoi

♦ Filter ♦ Date Obs ♦ UT ♦ Seeing ♦ ZP

W-S-I+ 2012-08-11 12:35:48 0.708

13:16:16 0.876

13:24:16 0.704

12:22:32 0.753

12:54:45 0.714

12:26:38 0.577

12:34:48 0.691

13:22:16 0.721

12:24:39 0.694

13:02:36 0.790

12:58:07 0.778

13:26:17 0.761

13:02:36 0.766

2012-08-11 12:38:02 0.800

2012-08-11 13:28:21 0.779

2012-08-11 13:10:13 0.775

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

2012-08-11

W-S-L+

Dec

SUPA01355755 328.086395423 0.0428822441543 W-S-I+

dial	⊛ Box					1	✓				SUPA01355625	328.000197563	-0.0727636608866	W-S-I+
						2	I				SUPA01355855	328.344822964	0.127209152876	W-S-I+
						3			≤	≤	SUPA01355927	328.266200346	0.0256804355158	W-S-I+
A:	328	(degree)	DEC:	0	(degree)	4					SUPA01355491	327.884162768	0.12074228427	W-S-I+
1.1	6000			40		5				S	SUPA01355683	328.36302907	-0.00205263368757	W-S-I+
ith:	6000	(arcmin)	Height:	40	(arcmin)	6	≤	≤	≤		SUPA01355530	327.808654223	0.119885193054	W-S-I+
						7					SUPA01355618	328.235832385	-0.0935424529044	W-S-I+
						8					SUPA01355647	328.118496861	0.298785128828	W-S-I+
						9					SUPA01355907	328.24953219	0.059047789932	W-S-I+
ch	Depat					10	≤	≤	≤		SUPA01355963	327.828915745	0.279744429393	W-S-I+
	Reset					11					SUPA01355827	328.229732171	0.248781066965	W-S-I+
						12	≤		≤		SUPA01355510	327.775333632	0.119941676898	W-S-I+
						13					SUPA01355752	328.205275351	0.249465196325	W-S-I+
						14		⊻			SUPA01355712	328.205662234	0.0390453734342	W-S-I+
						15	≤	I	I	≤	SUPA01355948	328.229455374	0.00823614584762	W-S-I+

Number of Selected Data: img: 490 cat: 490 mat: 490 psf: 490

1

-

1

Request

16 . 32.322 32.271

32.322

32.337

32.351

32 370

32.359

32.328

32.318

32.315

32.304

32.357

32.307

32.317

32.311

32.309