Search for High-z Quasars and Brown Dwarfs with HSC data: Survey Design

Yoshiki Matsuoka¹

on behalf of the HSC High-z QSO/Brown Dwarf Survey team Naoko Asami², Satoko Sorahana³, Shinki Oyabu¹, et al. (¹Nagoya University, ²JPSE, ³ISAS/JAXA)

What motivate us to search for distant quasars

Formation of SMBHs - Seed BH? - How did they grow ?

- Co-evolution with host galaxies?

Search for

Most Distant

Quasars!

Cosmic Reionization

- When and where?
- How did it proceed?
 - lonizing sources?

Chemical Evolution of the Universe

- SF history right after the dark age?
- Frequency of SNe Ia/II?

Only ~20 quasars at z > 6 expected with $z_{AB} < 24$ mag over 100 deg² → Wide and deep imaging survey with multiple bands around 1 μ m.

Survey Flow

HSC imaging data Photometry catalog Color selection 1.5 (bow 1.0 (AB 0.5 2 3 C i - z (AB mog) Follow-up photometry

Initial candidate list

Individual science Brown dwarfs High-z quasars SDSS J2315-0023 (z=6.117) 7000 8000 9000 Wavelength Spectroscopy Probabilistic selection Final candidate list

Initial Selection of Candidates

5.9 < z < 6.4 color selection through i, z, and y filters ~ 200 objects at zAB < 24 mag ~ 400 objects at zAB < 25 mag (/1,000 deg²)

<u>6.6 < z < 7.2</u>

color selection through

- z, y, and J filters
- ~ 30 objects at yAB < 23.5 mag
 - ~ 70 objects at y_{AB} < 24.5 mag (/1,000 deg²)

Initial Selection of Candidates

5.9 < z < 6.4 color selection through i, z, and y filters ~ 200 objects at zAB < 24 mag ~ 400 objects at zAB < 25 mag (/1,000 deg²)

Survey simulation with

- realistic surface density
 intrinsic scatter of colors
- of quasars and brown dwarfs and
- photometry errors
 assuming the HSC wide survey

Quasars:

- LF of Willott+10
- 340 high-quality SDSS spectra at z~3.0
- GP absorption of Songaila04

Brown dwarfs:

- Galactic thin-disk model with local calibrations (Caballero+08)
- SpeX and CGS4 spectral library

z_{AB} < 25 mag, 100 deg² w/ photometry errors

z_{AB} < 25 mag, 100 deg² w/o photometry errors

Legends: + O-M stars • Late-M dwarfs • L dwarfs • T dwarfs • Quasars at z=5.0-6.5

z_{AB} < 24 mag, 100 deg² w/ photometry errors

Follow-up Photometry

z_{AB} < 25 mag, 100 deg² w/ photometry errors

> In most cases contaminants have catastrophic magnitudes in one of the three bands, which can be fixed by follow-up photometry.

Number of contaminants when we have correct magnitudes in

	none	i band	z band	y band	i, z, y bands
	i _{obs} , Z _{obs} , Y _{obs}	İ _{true} , Z _{obs} , Y _{obs}	i _{obs} , z _{true} , y _{obs}	İ _{obs} , Z _{obs} , Y _{true}	İ _{true} , Z _{true} , Y _{true}
Late-M	146	105	26	142	0
L	195	189	18	181	0
Т	24	32	5	20	3
Total	365	326	49	343	3

Probabilistic Selection

Bayesian probability P_q that a source (*d*, det) is a quasar:

 $P_q = W_{qso}(\boldsymbol{d}, det) / \{W_{qso}(\boldsymbol{d}, det) + W_{bd}(\boldsymbol{d}, det)\}, \text{ where }$

 $W_{qso}(d, det) = \int \int S_{qso}(z, redshift) Pr(det | z, redshift) Pr(i_{obs}, z_{obs}, y_{obs} | z, redshift) dz d(redshift)$

 $W_{bd}(d, det) = \int \int S_{bd}(z, sptype) \Pr(det | z, sptype) \Pr(i_{obs}, \overline{z_{obs}}, y_{obs} | z, sptype) dz d(sptype).$

Follow-up Spectroscopy

Expected spectrum of a quasar, with 1-hr exposure using 8-m telescopes (Sky background in the Gemini-N/GMOS ITC is assumed)

→ Quasars at z_{AB} < 24 mag can be identified with < 4 hr exposures, but the identification becomes challenging at fainter magnitudes.

Survey Completeness

A Science Case: Luminosity Function

LF form at lower z: $\Phi(M_{1450}) = 10^{k(z-6)} \Phi^* / [10^{0.4(\alpha+1)(M1450-M1450^*)} + 10^{0.4(\beta+1)(M1450-M1450^*)}]$

Constraints on the parameters: minimize $S = -2 \ln L$

= -2 $\Sigma_{i=1,N}$ ln[$\Phi(M_{1450,i}, z_i) p(M_{1450,i}, z_i)$]

+ 2 $\int \int \Phi(M_{1450}, z) p(M_{1450}, z) dV/dz dz dM_{1450}$ where L is the likelihood (ML method).

A Science Case: Luminosity Function

LF probed down to

 $\begin{array}{l} M_{1450}=-22\mbox{ mag}\ (z_{AB}<24\mbox{ mag})\\ M_{1450}=-21\mbox{ mag}\ (z_{AB}<25\mbox{ mag})\\ Deep enough to catch the break\\ magnitude\ M_{1450}^*\ if\ it\ is\ not\ far\\ from\ the\ expected\ values. \end{array}$

Summary

- HSC provides an unprecedented opportunity to search for high-z quasars.
- The expected numbers of quasars per 1000 deg² are 200/400 (z_{AB} < 24/25 mag) at z~6, 30/70 (y_{AB} < 23.5/24.5 mag) at z~7.
- Initial selection of candidates can suffer from numerous contaminants when S/N of the photometry < 5, but they are much reduced when S/N > 10.
- Follow-up photometry in a single band (z band in the case of z~6) and/or the probabilistic selection can be powerful. Whether or not to take these steps depends on the actual number of initial candidates and available resources.
- Spectroscopic follow-up is challenging at $z_{AB} > 24$ mag with 8-m telescopes.
- By reaching down to M_{1450} < -22 mag, we can put a stringent constraint on the break magnitude M_{1450} * of the luminosity function.
- We are also discussing about a systematic search for brown dwarfs (~20,000/2,000 objects of L/T dwarfs expected at $z_{AB} < 24$ mag, 1000 deg²).
- Publication plan: we aim to discover the first set of high-z quasars within a year of the first data release of the HSC survey.