
Host dark halo masses of quasars

Masamune Oguri 
(Kavli IPMU, University of Tokyo)

2012/12/19 supermassive black hole in the universe @ Ehime

[Thanks to Issha Kayo (Toho), Joel Zinn, David Spergel 
(Princeton), Alexie Leauthaud (Kavli IPMU) for discussions]



Dark halo
Galaxy

Quasar

Quasars (cosmologist’s view)

• quasars are luminous 
   nuclei of galaxies

• galaxies lie in dark halos

• understanding relation 
   between quasars and 
   dark halos is a key for 
   uncovering the origin
   of quasar activity



Traditional approach: clustering

• large-scale clustering contains information on 
   bias δQSO = bQSOδDM

• since bias depends on halo mass b=b(M) we 
   can infer host halo masses from clustering

ξ(r)



SDSS/2dF measurements
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Figure 12. Evolution of the linear bias of quasars, bQ, with redshift, to z = 3.
The (black) circles, are from the SDSS DR5Q UNIFORM sample (this work);
the (red) squares, from the photometric SDSS quasar measurements (Myers
et al. 2006); the (green) squares from the 2QZ survey (Croom et al. 2005);
the (black) stars are from the 2SLAQ QSO survey (da Ângela et al. 2008); the
solid lines give dark halo masses from the models of Sheth et al. (2001) with
log h−1 M" = 12.6, 12.3, and 11.7 from top to bottom. The dotted lines give
dark halo masses from the models of Jing (1998) with log h−1 M" = 12.3, 12.0,
and 11.7 from top to bottom.
(A color version of this figure is available in the online journal.)

s = 1–20 h−1 Mpc to compute ξ̄ρ(r, z). The cosmological
parameters used in our chosen model are Ωm(z = 0) = 0.3,
ΩΛ(z = 0) = 0.7, Γ = 0.17, and σ8 = 0.84. We find the simple
form

ξ̄ρ(r, z) = [A exp(Bz) + C]ξ̄ρ(r, z = 0), (17)

where A = 0.2041, B = −1.082, and C = 0.018 models the
evolution of ξ̄ρ(r, z) extremely well, for 1 h−1 Mpc ! s !
20 h−1 Mpc.

At the mean redshift of our survey, Ωm(z = 1.27) = 0.81,
we find bQ(z = 1.27) = 2.06 ± 0.03 from the full SDSS DR5Q
UNIFORM sample. The values for our redshift subsamples are
shown as filled circles in Figure 12 and are given in Table 3.
We estimate our errors by using the variations in ξ̄ (s) from our
21 jackknife estimates, scaled using the number of DD pairs
in each redshift slice subsample. Previous measurements from
the 2QZ Survey (filled green circles; Croom et al. 2005), the
2SLAQ QSO Survey (open black stars; da Ângela et al. 2008)
and photometrically selected SDSS quasars (filled red squares;
Myers et al. 2007a) are again in excellent agreement with our
data. We compare these bias estimates with various models in
Section 5.4.

Having measured b(z) and assuming a cosmological model,
we can infer the parameter β(z) using Equation (12). The space
density of quasars is much smaller than that of galaxies, so the
errors on the clustering measurement (e.g., ξ (rp,π )) are much
larger than for galaxy surveys (compared to Hawkins et al.
2003; Zehavi et al. 2005; Ross et al. 2007; Guzzo et al. 2008).
Furthermore, as discussed in Section 4.2, we have not included
the effects from the “Fingers-of-God” in the present calculation
of β(z) but the peculiar velocities at small (transverse rp)
scales will very strongly affect the measured redshift distortion
value of β (Fisher et al. 1994; da Ângela et al. 2005). With
b(z = 1.27) = 2.06 ± 0.03 and Ωm(z = 1.27) = 0.81 we
find β(z = 1.27) = 0.43, but for the reasons given above we

Table 3
Evolution of the Linear Bias for the SDSS Quasar UNIFORM Sample

〈z〉 ξ̄Q(s, z) ξ̄ρ (r, z) b

1.27 0.391 ± 0.011 0.069 2.06 ± 0.03
0.24 0.462 ± 0.104 0.176 1.41 ± 0.18
0.49 0.363 ± 0.028 0.138 1.38 ± 0.06
0.80 0.311 ± 0.133 0.104 1.45 ± 0.38
1.03 0.383 ± 0.118 0.085 1.83 ± 0.33
1.23 0.524 ± 0.095 0.072 2.37 ± 0.25
1.41 0.309 ± 0.134 0.062 1.92 ± 0.50
1.58 0.411 ± 0.119 0.054 2.42 ± 0.40
1.74 0.472 ± 0.141 0.049 2.79 ± 0.47
1.92 0.674 ± 0.166 0.043 3.62 ± 0.49
2.10 0.425 ± 0.442 0.039 2.99 ± 1.42

present no formal error bar. This result is consistent with the
values of β(z), measured from redshift-space distortions in the
2QZ survey, β(z = 1.4) = 0.45+0.09

−0.11 (Outram et al. 2004) and
β(z = 1.4) = 0.50+0.13

−0.15 (da Ângela et al. 2005).

5.4. Models of Bias and Dark Matter Halo Mass Estimation

We now compare our bias measurements with those of recent
models for the relationship of quasars to their host halos.

The fitting formula of Jing (1998), which is derived from
N-body simulations and assumes spherical collapse for the
formation of halos, is plotted in Figure 12 (dashed lines) with
the assumed halo masses (top to bottom) MDMH = 2.0 ×
1012 h−1 M", 1.0 × 1012 h−1 M" and 5.0 × 1011 h−1 M",
respectively. With the Jing (1998) model, we find the halo
mass at which a “typical SDSS quasar” inhabits remains
constant (given associated errors) with redshift, at a value of
a MDMH ∼ 1 × 1012 h−1 M".

By incorporating the effects of nonspherical collapse for
the formation of DMH, Sheth et al. (2001) provide fitting
functions for the halo bias, which are also shown in Figure 12
(solid lines). Here, the three assumed halo masses of (top to
bottom) MDMH = 4.0 × 1012 h−1 M", 2.0 × 1012 h−1 M"
and 5.0 × 1011 h−1 M", respectively, are plotted. Comparing
our results to the Sheth et al. (2001) models, we again find
the host DMH mass is constant with redshift, at a value of a
MDMH ∼ 2 × 1012 h−1 M"; this mass does not significantly
change from z ∼ 2.5 to the present day, i.e., over 80%
the assumed age of the universe. Therefore, as DMH masses
generally grow with time, the ratio of the halo mass for a typical
quasar to the mean halo mass at the same epoch drops as one
approaches redshift z = 0. Since the “nonspherical collapse”
model is likely to be more realistic, and for ease of comparison
with previous results, we quote the Sheth et al. (2001) halo mass
value from here on.

Our values of halo masses of MDMH ∼ 2 × 1012 h−1 M"
found for the SDSS quasars compare very well to those of
Padmanabhan et al. (2008a), who find a similar value for low
(z < 0.6) SDSS quasars. Croom et al. (2005) also find a
constant, but slightly higher value of MDMH = 3.0 ± 1.6 ×
1012 h−1 M", by using the Sheth et al. (2001) prescription, over
the redshift range 0.3 < z < 2.9 for the 2QZ. da Ângela et al.
(2008) also find MDMH ∼ 3.0 × 1012 h−1 M" but recall this
analysis uses data from both the 2QZ and 2SLAQ QSO surveys.
Myers et al. (2007a) provide halo masses (also using the Sheth
et al. 2001 prescription) for two cosmologies and we take their
Γ = 0.15, σ8 = 0.8 model as this is closer to our own assumed
cosmology. Again no evolution in the halo mass is found from
z ∼ 2.5, but the Myers et al. (2007a) value of MDMH =

Ross et al. (2009)

• clustering analysis 
   indicates quasars
   live in halos with 
   M ~ 1012.5h−1MSun
   (e.g., Shen et al. 2007; 
     Ross et al. 2009;
     White et al. 2012)



Are we done?

• clustering analysis tells you average host halo 
   masses of quasars

• we want to know the distribution of host halo 
   masses as well



Halo Occupation Distribution (HOD)

• average number of quasars in a halo as a function 
   of its halo mass, 〈N(M)〉

• The HOD model enables predictions for various
   observables, including clustering

halo with 
mass M N(M)



HOD analysis of clustering

• interpreting the full clustering signals with HOD

• data: small-scale clustering 
   from Kayo & Oguri (2012)  
   and large-scale clustering 
   from Ross et al. (2009)

   [see Issha Kayo’s poster]

Kayo & Oguri MNRAS 424(2012)1363



Our HOD model
Kayo & Oguri MNRAS 424(2012)1363

• log-normal〈N(M)〉with a constant satellite 
   fraction fsat (i.e. very different from galaxy HOD)

• Idea: weak luminosity dependence of quasar 
  clustering implies weak halo mass dependence
  of quasar luminosities, triggering quasar activity 
  may require gas-rich mergers, while cold gas is 
  deficient in cluster galaxies....

M

〈N(M)〉
[see Issha Kayo’s poster]



Analysis result

• our HOD model successfully fits the data

• implied satellite fraction fsat ~ 5%

Kayo & Oguri MNRAS 424(2012)1363
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Figure 5. The best-fit HOD model 〈N(M)〉 (solid) and the host
halo mass distribution 〈N(M)〉dn/dM (dashed). Both curves are
normalized so that it becomes unity when integrated over d logM .

10 compared with our fiducial model (Bullock et al. 2001).
This enhanced concentration model predicts cvir ∼ 30 for
haloes with mass M = Mm at z = 1.4. The result shown in
Figure 7 indicates that this high-concentration model bet-
ter reproduces the strong small-scale clustering found in the
measurements.

5 CONCLUSION

We have measured the small-scale correlation function of
low-redshift (0.6 < z < 2.2) quasars using a new sample
of 26 spectroscopically confirmed binary quasars from the
SQLS. The angular separation range of 1′′ < θ < 20′′ for
the binary quasar sample allows us to measure the quasar
auto-correlation function from the projected comoving sep-
aration rp ∼ 200h−1kpc down to rp ∼ 10h−1kpc. To do
so, we have assumed that our binary quasar sample is com-
plete within a specified range of redshifts and angular sep-
arations, which is based on careful selections and extensive
follow-up observations of the SQLS in order to construct a
complete gravitational lens sample. We have found that the
correlation function rises steeply toward smaller separations.
Our result is in reasonable agreement with earlier result by
Hennawi et al. (2006), in which large corrections of sample
incompleteness has been applied to measure small-scale clus-
tering signals. While the measured small-scale clustering in
our analysis appears to be slightly smaller than the result of
Hennawi et al. (2006), we note that our result is more con-
sistent with the clustering amplitude measurement within
a narrow separation range presented by Myers et al. (2008)
based on a complete binary quasar sample. By combining
our measurements with the large-scale correlation function
obtained by Ross et al. (2009), we have fitted the correlation
functions for a wide range of 0.01h−1Mpc ! rp ! 10h−1Mpc

Figure 6. HOD model predictions of the projected correlation
function wp(rp) for three different satellite fraction, fsat = 1
(dashed), 0.054 (solid), and 0.01 (dotted). An SIS profile is as-
sumed for the radial number density profile of satellites. The peak
mass in 〈N(M)〉, Mm in Eq. (11), is fixed to the best-fit value.
The shaded region around the best-fit model represents 1σ range.

Figure 7. Comparisons of the best-fit HOD model predictions for
the projected correlation function assuming SIS (solid) and NFW
(dotted) profiles with the measurements. The dashed line shows
the HOD model assuming an NFW profile, but with 10 times
larger concentration parameter than the fiducial Bullock et al.
(2001) model.

c© RAS, MNRAS 000, 1–10

[see Issha Kayo’s poster]



However, ...

• Richardson et al. (2012) considered a totally 
   different (galaxy-like) HOD model and 
   successfully explained the clustering signals (!)
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Fig. 2.— Fit to the 2PCF of z̄ = 1.4 quasars and the quasar HOD. Panel (a): our estimate of the full projected 2PCF of SDSS quasars
(data points and error bars) against the prediction of our best-fit HOD model (dotted line). Panel (b): the mean occupation function
of SDSS quasars, decomposed into its central (dashed line) and satellite (dot-dashed line) components. In both panel (a) and (b), the
shaded envelopes indicate the 68% confidence intervals (see the text). Panel (c): the probability distribution of host halo masses, shown
for both central (dashed line) and satellite (dot-dashed line) quasars. These distributions are obtained by multiplying the mean occupation
functions with the differential halo mass function, averaged over all the models in the MCMC chain (see §5.1 for discussion). Panel (d):
the probability density function of the satellite fraction as given by all our HOD models. In panels (c) and (d), the vertical dashed lines
indicate the central 68% for each distribution.

data then suggests that the effect on clustering from the
remaining sample differences in redshift and luminosity
does not exceed the 1σ level.
At rp < 1 h−1 Mpc, we must examine the completeness

of our correction for the larger πmax, as the projected
pair counts can only reflect the candidates identified
by each selection algorithm for follow-up spectroscopy.
Roughly 80% of the sub-arcminute same-redshift quasar
pairs were detected using the color-redshift relation (see
HE06). Extending the line-of-sight separation limit from
∼ 22 h−1 Mpc to ∼ 80 h−1Mpc corresponds to a red-
shift difference of only ∆z ∼ 0.04. For such a small
redshift difference, the intrinsic dispersion and photo-
metric redshift errors continue to dominate the scatter
in the color-redshift relation, marginalizing the effect of
our correction. This suggests that our correction with
the SDSS DR7 πmax is reasonably complete.
A second selection effect involves differences in lumi-

nosity threshold. The sub-arcminute clustering sam-
ple contains companion quasars primarily targeted to a
fainter flux limit (i < 21.0) than that of the SDSS par-
ent sample (i < 19.1). Although the luminosity evo-
lution of small-scale quasar clustering has not yet been
investigated, studies of large-scale clustering (rp > 1 h−1

Mpc) have detected weak to no luminosity evolution over
similar redshift and luminosity ranges (e.g., Myers et al.
2007a; Shen et al. 2009). Assuming that the small-scale
clustering evolves with luminosity similarly to large-scale
clustering, we estimate that the amplitude of the pro-
jected 2PCF could be boosted, at most, by ∼ 30% for
a flux limit change from i < 21.0 to i < 19.1. This is
within the statistical uncertainty of our modeling.
Finally, we must ensure that including the small-scale

clustering (i.e., the corrected HE06 estimates) does not
alter the constraints given by the large-scale DR7 mea-
surements. The small-scale clustering mainly constrains
the satellite HOD, while the central quasar HOD is
mainly constrained by the large-scale clustering and the
number density. We have verified that our modeling
yields an identical central occupation function regardless
of whether the small-scale data are included.

6.2. Redshift and Luminosity Evolution of the HOD

In order to have the strongest statistical power, our
clustering samples are constructed over a broad redshift
and luminosity range to maximize the volume and the
number of sources. The 2PCF obtained in this way can
be interpreted as an average over the redshift and lu-



A question

• how can we break the degeneracy in the HOD 
   models?



Three HOD models 5

FIG. 1. Three HOD models



... that reproduce the same wp(rp)
6

FIG. 2. Projected correlation function. Results of fitting to the three different HOD models.

FIG. 3. Halo mass distributions for quasar pairs with separation rp < 0.1h−1Mpc. The redshift is fixed to z = 1.4.



Possible approaches

• examining halo masses of each binary quasar

• stacked weak lensing around quasars

• quasar-cluster cross-correlation

• velocity differences of binary quasars
   (not today)



I. halo masses of binary quasars

• small-separation binary quasars live in the same
   halo (1-halo term)

• with the HOD model we can derive PDF of 
   the host mass of the pair as

3

to obtain

f(< rp,max) = nq

∫

dk P (k)rp,maxJ1(krp,max). (22)

Assuming P (k) ≈ P1h(k), it reduces to

f(< rp,max) =
1

nq

∫

dk rp,maxJ1(krp,max)

∫

dM
[

2〈Ncen(M)〉〈Nsat(M)〉u(k;M, cq) + 〈Nsat(M)〉2|u(k;M, cq)|2
] dn

dM
.

(23)
Thus we obtain the halo mass distribution of quasar pairs with rp < rp,max:

dp

dM
=

1

f(< rp,max)nq

∫

dk rp,maxJ1(krp,max)
[

2〈Ncen(M)〉〈Nsat(M)〉u(k;M, cq) + 〈Nsat(M)〉2|u(k;M, cq)|2
] dn

dM
.

(24)
Figure 3 show the probability distribution of halo masses for quasar pairs with rp < rp,max = 0.1h−1Mpc.

B. Stacked weak lensing

Weak lensing provides an alternative way to constrain halo masses, so stacked weak lensing can potentially distin-
guish the HOD models that produce the same clustering signals. We consider angular power spectra for simplicity.
The quasar-convergence cross power spectrum Cqκ(!) is equivalent to stacked lensing around quasars. The 1-halo
term becomes

Cqκ,1h(!) =
1

nA,q

∫

dz
d2V

dzdΩ

∫

dM [〈Ncen(M)〉+ 〈Nsat(M)〉p̃nfw(!;M, cq)] κ̃nfw(!;M, c)
dn

dM
, (25)

and the 2-halo term is

Cqκ,2h(!) =

∫

dzWq(z)Wκ(z)

(

dχ

dz

)−1 1

χ2
Pm(k = !/χ), (26)

where

Wq(z) ≡
1

nA,q

d2V

dzdΩ

∫

dMbh(M)〈N(M)〉
dn

dM
, (27)

Wκ(z) =
ρ̄m(z)

H(z)Σcrit(1 + z)
, (28)

nA,q =

∫

dz
d2V

dzdΩ

∫

dM〈N(M)〉
dn

dM
. (29)

The covariance is given by

Cov[Cqκ(!), Cqκ(!′)] =
4π

Ωs

δK""′
(2!+ 1)∆!

[(

Cqq +
1

nA,q

)(

Cκκ +
σ2
e

ngal

)

+ (Cqκ)2
]

. (30)

The power spectra Cqq and Cκκ(!) are given by

Cqq,1h(!) =
1

n2
A,q

∫

dz
d2V

dzdΩ

∫

dM
[

2〈Ncen(M)〉〈Nsat(M)〉p̃nfw(!;M, cq) + 〈Nsat(M)〉2|p̃nfw(!;M, cq)|2
] dn

dM
, (31)

Cqq,2h(!) =

∫

dz [Wq(z)]
2

(

dχ

dz

)−1 1

χ2
Pm(k = !/χ), (32)

Cκκ(!) =

∫

dz [Wκ(z)]
2

(

dχ

dz

)−1 1

χ2
PNL
m (k = !/χ). (33)

Figure 4 shows stacked weak lensing signal for SDSS quasars and HSC-Wide weak lensing measurements.
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(24)
Figure 3 show the probability distribution of halo masses for quasar pairs with rp < rp,max = 0.1h−1Mpc.

B. Stacked weak lensing

Weak lensing provides an alternative way to constrain halo masses, so stacked weak lensing can potentially distin-
guish the HOD models that produce the same clustering signals. We consider angular power spectra for simplicity.
The quasar-convergence cross power spectrum Cqκ(!) is equivalent to stacked lensing around quasars. The 1-halo
term becomes
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Figure 4 shows stacked weak lensing signal for SDSS quasars and HSC-Wide weak lensing measurements.

• this can be compared with detailed follow-up
   observations of individual binary quasars



I. halo masses of binary quasars
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FIG. 2. Projected correlation function. Results of fitting to the three different HOD models.

FIG. 3. Halo mass distributions for quasar pairs with separation rp < 0.1h−1Mpc. The redshift is fixed to z = 1.4.

• indeed, halo mass
   PDFs for small pairs
   are quite different!

• how can we measure 
   halo masses in obs?
   deep X-ray, deep WL, 
   # of galaxies, ...

• note: Green et al. 2011
  observed 7 pairs with 
  Chandra and detected
  no extended emission 



II. stacked weak lensing

• stacked weak lensing provides alternative way
   to constrain HOD models 

• may be able to break the degeneracy
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Figure 3 show the probability distribution of halo masses for quasar pairs with rp < rp,max = 0.1h−1Mpc.

B. Stacked weak lensing

Weak lensing provides an alternative way to constrain halo masses, so stacked weak lensing can potentially distin-
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nA,q =

∫

dz
d2V

dzdΩ

∫

dM〈N(M)〉
dn

dM
. (29)

The covariance is given by

Cov[Cqκ(!), Cqκ(!′)] =
4π

Ωs

δK""′
(2!+ 1)∆!

[(

Cqq +
1

nA,q

)(

Cκκ +
σ2
e

ngal

)

+ (Cqκ)2
]

. (30)

The power spectra Cqq and Cκκ(!) are given by

Cqq,1h(!) =
1

n2
A,q

∫

dz
d2V

dzdΩ

∫

dM
[

2〈Ncen(M)〉〈Nsat(M)〉p̃nfw(!;M, cq) + 〈Nsat(M)〉2|p̃nfw(!;M, cq)|2
] dn

dM
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2

(
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PNL
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Figure 4 shows stacked weak lensing signal for SDSS quasars and HSC-Wide weak lensing measurements.
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to obtain

f(< rp,max) = nq

∫

dk P (k)rp,maxJ1(krp,max). (22)

Assuming P (k) ≈ P1h(k), it reduces to

f(< rp,max) =
1

nq

∫

dk rp,maxJ1(krp,max)

∫

dM
[

2〈Ncen(M)〉〈Nsat(M)〉u(k;M, cq) + 〈Nsat(M)〉2|u(k;M, cq)|2
] dn

dM
.

(23)
Thus we obtain the halo mass distribution of quasar pairs with rp < rp,max:

dp

dM
=

1

f(< rp,max)nq

∫

dk rp,maxJ1(krp,max)
[

2〈Ncen(M)〉〈Nsat(M)〉u(k;M, cq) + 〈Nsat(M)〉2|u(k;M, cq)|2
] dn

dM
.

(24)
Figure 3 show the probability distribution of halo masses for quasar pairs with rp < rp,max = 0.1h−1Mpc.

B. Stacked weak lensing

Weak lensing provides an alternative way to constrain halo masses, so stacked weak lensing can potentially distin-
guish the HOD models that produce the same clustering signals. We consider angular power spectra for simplicity.
The quasar-convergence cross power spectrum Cqκ(!) is equivalent to stacked lensing around quasars. The 1-halo
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Figure 4 shows stacked weak lensing signal for SDSS quasars and HSC-Wide weak lensing measurements.

[see also Joel Zinn’s poster]
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FIG. 4. Stacked weak lensing of quasars. Assuming the HSC-Wide area of 1400 deg2. Here we consider quasars at 0.6 < z < 1.2
and the source galaxy population at z > 1.3. The whole source galaxy sample has the density 20 arcmin−2 and σe = 0.22.

FIG. 5. Cross-correlation between SDSS quasars and HSC-Wide cluster sample at 1 < z < 1.4.

• with HSC-wide+SDSS 
   we can detect weak 
   lensing signals very
   significantly

• signals indeed depend 
   on HOD models 



III. quasar-cluster cross-correlation 

• quasar-cluster cross-correlation might tell you
   how HOD extends toward high halo masses

• reliable cluster catalog up to z~1.4 can be 
   constructed with HSC-wide

4

C. Quasar-cluster cross-correlation

Since the three HOD models have different behaviors at high halo masses, cross-correlating quasars with high-mass
objects like clusters of galaxies may also help break the degeneracy. The number density of clusters is computed as

nA,c =

∫

dz
d2V

dzdΩ

∫

dMS(M)
dn

dM
, (34)

S(M) ≡
1

2
[erfc{x(Mmin)}− erfc{x(Mmax)}] , (35)

x(Mobs) ≡
ln2(Mobs/M)√

2σlnM

. (36)

We fix σlnM = 0.3 for simplicity. The 1-halo term of the quasar-cluster cross power spectrum Cqc(") is computed as

Cqc,1h(") =
1

nA,qnA,c

∫

dz
d2V

dzdΩ

∫

dM [〈Ncen(M)〉+ 〈Nsat(M)〉p̃nfw(";M, cq)]S(M)poff(")
dn

dM
, (37)

where poff(") describes the off-centering effect of clusters. For simplicity, here we assume the Gaussian distribution

poff(") = exp

(

−
1

2
θ2"2

)

, (38)

with θ being fixed to the angle corresponding to 0.4h−1Mpc at each redshift. The 2-halo term is

Cqc,2h(") =

∫

dzWq(z)Wc(z)

(

dχ

dz

)−1 1

χ2
Pm(k = "/χ), (39)

where

Wc(z) ≡
1

nA,c

d2V

dzdΩ

∫

dMbh(M)S(M)
dn

dM
. (40)

Figure 5 shows expected cross-correlation signals for SDSS quasars and HSC-Wide cluster sample. Of course we
can also use cluster samples from many different surveys, like SZ surveys, WISE clusters, etc.
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FIG. 4. Stacked weak lensing of quasars. Assuming the HSC-Wide area of 1400 deg2. Here we consider quasars at 0.6 < z < 1.2
and the source galaxy population at z > 1.3. The whole source galaxy sample has the density 20 arcmin−2 and σe = 0.22.

FIG. 5. Cross-correlation between SDSS quasars and HSC-Wide cluster sample at 1 < z < 1.4.

• again, cluster-quasar 
   cross-correlations 
   can be detected with 
   HSC+SDSS

• large 1-halo term 
   difference, may be 
   useful



Summary

• auto-correlation alone cannot constrain quasar
   HOD very well

• there are several ways to break the degeneracy 
   in the HOD models

• HSC data will be very useful for some of them
   (HSC-SDSS overlap is a big advantage!)

• other possibilities?


