Synergy with Mid-Infrared Surveys

Search for Reddened AGNs with AKARI and WISE

Shinki Oyabu (Nagoya Univ.), Kentaro Aoki (Subaru)

Contents

MIR search for AGNs
Search for reddened AGNs using AKARI MIR survey
Subaru observations of WISE sources
HSC Synergy

Optical survey missed several AGNs.

- How many are they?
- low-z reddened quasars in major mergers.
- They may be transforming objects (Starburst \rightarrow type 1AGN).
high fraction of FeLoBALs in reddened quasars (30\% in F2MS vs. 0.3% in SDSS quasars).

Maybe dominant in the most luminous
sing MIR bands, we can detect termal emission from dusty torus f AGNs and discriminate them om stars.

IIR is robust against extinction. \rightarrow xpect to discover reddened uasar missed by optical survey.

EARCH FOR REDDENED AG ISING AKARI MIR SURVEY

KARI mid-infrared allky survey catalog
9 \& $18 \mu \mathrm{~m}$
$|\mathrm{b}|<30$, LMC, and SMC regions are excluded.
Identified with 2MASS

riteria of MIR excess

$\frac{F(9 \mu \mathrm{~m} \text { or } 18 \mu \mathrm{~m})}{F(K s)}>2$

| 500 candidates

We suffer from the contamination of PAH strong galaxies like M82.

2 spectra are taken.
46 AGNs (I5 AGNs have a PAH emission in $3.3 \mu \mathrm{~m}$)

33 star-forming galaxy
| 3 red stars

Ve also performed optical pectroscopy from the ground.

Lick 3m, KPNO 2m, SAAO 2m

Redden AGN example

2AS 0|250+2832 at $z=0.04$

(b) IRAS 01250+2832

(b) IRAS $01250+2832$

4000

SED of
 IRAS 0|250+2832

r this galaxy, 500K black body i necessary.

Subaru IRCS/AO 188 images

DA 84274
-Dn(4000)=1.1

-Galaxy mass: $6 \times 10^{9} \mathrm{M} _$sun

AS 01250+2832

- $\operatorname{Dn}(40 \cap n)=1 \kappa$

-Gale Next targets are more distant and fainter

AGN 1920074
Galaxy mass: $3 \times 10^{9} \mathrm{M}$ _sun

SUBARU FOLLOW-UP OBSERVATIONS

 OF WISE SOURCES
40 cm telescope

All sky survey at $3.4,4.6,12$, and $22 \mu \mathrm{~m}$
Detection limits are $0.08,0 . \mathrm{II}, \mathrm{I}$, and 6 mly at 3.4, 4.6, I2, and $22 \mu \mathrm{~m}$, respectively.

For AKARI, 50 mJy at 9 um

large area (whole sky).

deep as large surveys in other wavelengths.
$L_{3000 \AA}=45.2$

$(\mathrm{i}-\mathrm{K}))_{\operatorname{lega}}=4.1$
$\mathrm{z}=0.766$

roint sources tend to be higner reashift.

- Extended sources are $\mathbf{z}<1$.
- Significant number of UKIDSS extended sources.

$\Delta \mathrm{i}-\mathrm{K}=(\mathrm{i}-\mathrm{K})-(\mathrm{i}-\mathrm{K})_{\mathrm{typ}}$ ical quasar @same redshift - different from SDSS quasars.
- reason is host contribution or dust-reddened nucl

HSC SYNERGY

HSC improvement

We have to think about the method to confirm AGNs.

We have to understand the success rate $\sim 30 \%$ of FMOS follow-up observations in order to know the completeness issue.

Plan

I have to find Dr. Aoki and ask him what his plan is.

Summary

Mid-infrared surveys are powerful tool of searching for redden AGNs.

AKARI MIR all-sky survey found very redden AGNs.

- WISE capability extends more distant AGNs.
- HSC-WIDE survey will be useful.

synergy w/HSC-WIDE

- FMOS spectroscopy.
- 4 regions in HSC-WIDE area (UKIDSS/ LAS).
- 2 nights allocated in next May.

