Prospects of the semi-analytic model of galaxy formation

masahiro@nagasaki-u.ac.jp

Masahiro Nagashima (Nagasaki U) with M. Enoki, M.A.R. Kobayashi & T. Ishiyama

results and prospects of out semi-analytic model of galaxy formation

bulge formation – pseudo-bulge and supermassive black holes

Numerical Galaxy Catalog

blue: dark matter white: galaxies created by using a semi-analytic model of galaxy formation, "vGC (numerical galaxy catalog)" (Nagashima et al. 2005)

L=100Mpc box

 \rightarrow see http://4d2u.nao.ac.jp/t/var/download/index.php?id=lss2

Galaxy Formation in the Hierarchical Clustering Scenario

early Universe

present day

Why SA models?

- Many galaxies can be realized
 - ~10⁵ galaxies with $\phi \sim 10^{-1} h^3 / Mpc^3$ in 100Mpc/h box
 - QSO's \u03c6 is much smaller than that of galaxies need much larger boxes
 - direct comparison with observations: constructing mock catalogs
- High speed computation: we can run many models in wide parameter space
 - we can get physical understanding
- SA models have revealed that ΛCDM is not inconsistent with many observations
 - luminosity functions, amount of gas, two-point correlations, etc.
 - ways growing S/E galaxies based on hierarchical clustering scenario

distributions of dark matter and galaxies red scale: dark matter density color circles: galaxies Iuminosity functions

Cosmic Star Formation History

Elliptials: (b) and (c) are favourable, and (a) should be impossible because such large clouds cannot collapse at high redshift

Future Plan for N-body sim.

- published version (Yahagi):
 - ► N=512³, m_p=3×10⁸Msun, L=70Mpc/h (140Mpc/h)
- current version (Ishiyama):
 - N=2048³, $m_p = 3 \times 10^8$ Msun, L=280 Mpc/h
 - Volume: 4³=64 times、QSO/AGN OK (it should be difficult to say something about spatial distribution)
- future prospects (Ishiyama):

→ Enoki's talk

- L=560Mpc/h box
 - larger (8 times) volume, worse resolution
 - getting positions of halos at output redshift from Nbody results, and using Extended Press-Schechter model, follow merging histories → hybrid model
- Use of "K" computer (2013? ~ 2016?)
 - enables N=4096³、8192³ calculation

Image of hybrid model

low res., large box N-body sim.

Resolution is matter

- Results depend on the minimum mass of halos: 3×10^9 Msun vs 2×10^{10} Msun
- need resolve Jeans mass at $z \sim 2-3$

M₁₄₀

M₇₀

2

100

80

60

50

40

30

V_{circ}=20km/s

6

4

redshift z

11

10

9

8

0

 $\log[M/h^{-1}M_{\odot}]$

Gordon Bell Prize for "K" comp.

N=10740³ Ishiyama, NItadori and Makino

http://www.ccs.tsukuba.ac.jp/CCS/pr/media/gordonbell121116

Next Generation SA model

- N=8192³ calculation enabes us:-
 - ► L=1120Mpc/h > 1Gpc/h !
 - to get 10³ rare objects with $\phi \sim 10^{-6} h^3/Mpc^3$
 - spatial distribution can be discussed (2-point corr. fn.)
 - For L=70Mpc/h box, the minimum halo mass is down to ~10⁶Msun
 - we can attack galaxy formation BEFORE reionization
- It will finish by 2015-2016?
 - N=4096³ calculation will finish by the end of 2013

Pseudo-bulge?

- some (most?) bulges seem to rotate
- it seems not to explain it by the major merger scenario
- "secular" evolution or disk instability may explain it? … rotating gas/stars in disks fall onto bulges, then bulges acquire anglar momenta

Kormendy & Kennicutt (2004)

Observations

- classical bulges have low SFR, and pseudobulges high.
- active pseudo-bulges have high SFRs, $M^*/\psi < 1/H \sim 10$ Gyr
 - secular evolution?
- inactive pseudo-bulges and classical bulges seem to stop SF activity at high z … starburst at high z?

Fisher et al. (2009)

Gas accretion onto SMBHs

- gas accretes onto SMBH during major merger
 - the details will be shown in Enoki's talk
- if pseudo-bulges are formed via secular evolution?
 - it seems difficult for gas to accrete onto SMBHs
- M_{bulge}-M_{BH} relation must deviate for pseudo-bulge?

"initial" star burst for bulge?

- high-res. numerical simulations suggest that spirals at z=0 have experienced starburst making bulges at high z, which is NOT caused by major mergers – just like "initial starburst"
- Much gas having low angular momentum accretes and causes starburst
- the predicted SFRs are consistent with those of observed inactive pseudobulges

Okamoto (2012)

Can it make SMBHs?

Summary

- Next generation SA models will enable us to handle many QSO/AGNs enough to estimate QSO autocorrelation functions
 - utilizing "K" computer
- Bulge formation processes must be reconsidered what can we learn from the HSC survey?

Evolutionary Cycle of Baryons

When dark halos merge:

- Hot gas components merge immediately
- Dividing galaxies into CENTRAL and SATELLITES

CENTRAL: central galaxy in the most massive progenito

Criteria of galaxy mergers:

 $t_{elapse} > t_{fric}$ (dynamical friction time-scale) satellite-central merger $\Delta t > t_{coll}$ (random collision) satellite-satellite merger

Types of mergers:

Merger of similar mass galaxies: STARBURST + BULGE FORMATION (MAJOR MERGER)

> Otherwise: Smaller galaxy is incorporated into disk of larger galaxy (MINOR MERGER)