銀河形成研究の最前線(国立天文台,13/02/2008)

銀河団の進化を俯瞰する

児玉 忠恭(NAOJ) 田中賢幸(ESO)小山佑世(東大) 鍛冶沢賢(NAOJ)田中壱(すばる)他

▶ 銀河団周辺構造における環境効果 (可視&スペース赤外、PISCES、0.4<z<1.3)</p>

▶ 原始銀河団における大質量銀河形成 (近赤外、HzRG、2<z<4)</p>

銀河形態の環境依存性

銀河種族の棲み分けの起源は?

N-body simulation (Dark matter)

先天的?

もともと楕円銀河は初期宇宙に銀 河団で生まれ、渦巻き銀河は少し 遅れてフィールドで生まれる。

後天的?

集団化の過程で渦巻き銀河が楕円 銀河やレンズ状銀河に変化する。

銀河の形態は高密度領域で変化する!?

渦巻銀河が合体して楕円銀河になる!?

渦巻銀河がガスを剥ぎ取られてレンズ状銀河になる!?

遠方宇宙を俯瞰する、すばる望遠鏡

ユニークな広視野装置によって、 遠方宇宙のパノラマ地図が得られる!

- Suprime-Cam (34'×27') 可視光線の撮像
- MOIRCS (7'×4')
 近赤外線の撮像と分光
- FMOS (30' φ)
 近赤外線の分光

→一般フィールドから銀河団中心部までの大規模構造 (銀河環境)を俯瞰し、その中での銀河の生態を見渡す。

z = 30(136億年前)

z = 2

z=5 (125億年前)

★S-Camによる可視光研究 (0.4<z<1.3), PISCES Kodama et al. (2001; 2004; 2005), Tanaka et al. (2005a;b; 2007a;b;c)

 $34' \times 27'$

★MOIRCSによる近赤外線研究 (2<z<3), HzRG Kodama et al. (2007)

 $M=6 \times 10^{14} M_{\odot}$, 20Mpc × 20Mpc (co-moving)

Yahagi et al. (ν GC; 2005)

z=3(115億年前)

 $4' \times 7'$

Panoramic Imaging and Spectroscopy of Cluster Evolution with Subaru

Class	Cluster	RA	Dec	z	L_X	Bands	Coordination	
		(J2000)	(J2000)		10^{44}			
<i>z</i> ~0.4	CL 0024+1654	$00\ 26\ 35.7$	+17 09 43.1	0.39	3.2	BRz', NB	ACS, XMM, Chandra	
	${ m CL}~0939{+}4713$	$09 \ 42 \ 56.2$	$+46\ 59\ 12$	0.41	9.2	BVRI,NB	XMM	
	RX J2228+2037	$22 \ 28 \ 36$	$+20 \ 37 \ 12$	0.42	16.5	BVRi'	Chandra, S-Z	
z~0.55	MS 0451.6-0305	04 54 10.9	-025807	0.54	12.0	BVRI	ACS (3.5'), Chandra, S-Z	
	${ m CL}$ 0016+1609	$00\ 18\ 33.5$	$+16\ 26\ 13.4$	0.546	26.0^{\dagger}	BVRi'z'	ACS (3.5'), XMM, Chandra, S-	Z
	MS 2053.7 - 0449	$20 \ 56 \ 21.8$	$-04 \ 37 \ 51.4$	0.583	5.0	BVRi'z'	ACS (3.5'), XMM, Chandra, S-	Z
<i>z</i> ~0.85	RX J1716.4+6708	$17 \ 16 \ 49.6$	+67 08 30	0.813	2.7^{\ddagger}	VRi'z'	Chandra, Astro-F target	
	MS $1054.4 - 0321$	$10 \ 56 \ 59.5$	$-03 \ 37 \ 28.4$	0.83	20.0	VRi'z'	ACS (6'), XMM, Chandra, S-Z	Spitzer
	RX J0152.7-1357	$01 \ 52 \ 42.0$	-13 57 52.9	0.831	16.0	VRi'z'	ACS (6'), XMM, Chandra, S-Z	Spitzer
	RX J1226.9+3332	$12 \ 26 \ 58.2$	$+33 \ 32 \ 49$	0.9	53.0	VRi'z'	XMM, Chandra, S-Z	Spitzer
	CL 1604 + 43	$16\ 04\ 28.3$	$+43 \ 16 \ 24.0$	0.9	2.0	VRi'z'	ACS $(6')$, XMM	Spitzer
$z\sim 1.2$	RDCS J0910+5422	09 10 44.9	$+54 \ 22 \ 08.9$	1.11	2.1	VRi'z'	ChandraACS(3.5')	Spitzer
	CL 1252 - 2927	$12 \ 52 \ 54.4$	$-29 \ 27 \ 17.0$	1.23	6.6	VRi'z'	ACS (6'), XMM, Chandra	Spitzer
	RX J1053.7+5735	$10\ 53\ 43.4$	$+57 \ 35 \ 21$	1.14	2.0^{\ddagger}	VRi'z'	ACS (6')XMM	Spitzer
	RX J0848.9+4452	$08 \ 48 \ 46.9$	$+44 \ 56 \ 22$	1.26	2.8	BVRi'z'	ACS (6'), XMM, Chandra	Spitzer

[†] 0.4–10 kev, [‡] 0.5–2 kev, others are bolometric X-ray luminosity ($H_0=70$).

Imaging: Suprime-Cam-BB

WFCAM (NIR) MOIRCS (NIR) Spectroscopy: FOCAS

CL0024, CL0939, CL0016, RX1716, RXJ0153, CL1604, CL1252, RXJ0849, CL0451, MS2054, MS1054, RD0910 Suprime-Cam-NB (H α) CL0024 (z=0.39), CL0939 (z=0.41) RXJ0153, CL1604, CL1252, RXJ0848 RXJ1716, RD0910 CL0939, CL0016, RXJ0153, CL1252, RXJ0848

銀河団集積過程のパノラマ

Photmetric redshift で選ばれた銀河の2次元分布 ($\Delta z = -0.05 \sim +0.03$)

RXJ 0152.7-1357 (VRIz')

分光観測による大規模構造の確認

RXJ 0152.7-1357 (BVRI)

CL 0016+16 (BVRi'z') 5 0 -5 -10

星形成活動の環境依存性 CL0939銀河団(z=0.41,43億年前)

銀河群(蛸足の吸盤)の環境で星形成活動が落ち始める。 Kodama et al. (2001), Tanaka, TK, et al. (2005)

星形成活動の環境依存性 RXJ1716銀河団 (z=0.81)

15µmソースが見つかる環境

星形成率の大きな銀河が中間的な環境(=group / filament)で多い

Passive spiralsが 銀河群環境に多く 見られる。

銀河群環境では、ram-pressure strippingは卓越的でなく、 銀河間相互作用(合体やハラスメント)や銀河ハローのホットガス の剥ぎ取り(弱いICM作用)などが支配的であると考えられる。

Moran et al. (2007)

Down-sizing in star formation as a function of Time

8,000 galaxies at 0.4<z<1.4 from DEEP2 Redshift Survey

0.40<z<0.70 4.3<t(Gyr)<6.3

0.75<z<1.00 6.5<t(Gyr)<7.7

Tanaka, TK, et al. (2005)

Down-sizing as a function of Cluster Richness

Star Formation Histories of Galaxies vs. Mass and Environment

high-mass/high-density → *low-mass/low-density*

PISCES(0.4<z<1.3)のまとめ

≻銀河団の集団化過程

周辺に大規模なフィラメント構造 (>10Mpc) が見られ、 銀河団スケールの集団化の現場を見ていると考えら れる。

▶銀河星形成史の環境依存性の起源

星形成活動性の増大と急激な減衰は中間密度領域 (銀河群)で見られる。銀河間相互作用が原因か?

▶ダウンサイジングの環境依存性

銀河形成&進化のタイムスケールは質量と環境に依存する。 大質量・高密度 → 小質量・低密度へ

可視光サーベイ(Lyα銀河など)から 近赤外線サーベイ(星質量分布)へ

- 可視光(銀河の座標では紫外線)でのサーベイ (Lyα輝線)では、若くて活発な星形成中の銀 河のみ捕らえることができる。
- しかし原始銀河団の全体像を得るには、星形成 率の低くなった銀河も含めて星質量全体の分布 を知る必要がある。
- それには、近赤外線(銀河の座標で可視光)での観測が重要である。すばるの広視野近赤外線カメラ(MOIRCS)が生かされる。

When does the red-sequence of galaxies eventually break down?

The most distant X-ray cluster to date (z=1.45, 9 Gyrs ago)

FIG. 1.— K_s -band image of a 3' field centered on the cluster with an X-ray overlay of contours in blue. The six spectroscopically confirmed members are circled in red (ID = 14651 is not detected in the K_s image). The green circle of diameter 60" shows the location of the region used for the X-ray analysis reported in § 3.1.

Stanford et al. (2006)

電波銀河周りの原始銀河団(2<z<3) の広視野近赤外撮像観測

Subaru/MOIRCS observations (except for 1558)

 $4.0^{\circ} \times 7.0^{\circ}$ (0.117'/pix), 7'=10-15Mpc@z=2-3

Targets (radio galaxies)	redshift (z)	J	Η	Ks	PSF
PKS 1138-262	2.156	83 min		55 min	0.5"~0.7"
USS 1558-003 (5' x 5')	2.527	180min (SOFI)		175min (SOFI)	0.7"
USS 0943-242	2.923	118min	68 min	63 min	0.4"~0.6"
MRC 0316-257	3.130	78 min	60 min	55 min	0.6"~0.7"

J=23.5, H=22.3, K=22.0 (5 sigma, Vega)

Kodama et al. (2006) in prep.

JHK selection of 2≤z≤3 galaxies

Common criteria (DRG): J-K>2.3 passive/dusty gals at z>2 \downarrow Our new criteria (JHK): (J-K)> 2(H-K)+0.5 && J-K>1.5 passive/dusty (2<z<3.3) + star-forming (2.4<z<3.1)

Kajisawa et al. (2006), Kodama et al. (2007)

JHK selection of 2≤z≤3 galaxies

Common criteria (DRG): J-K>2.3 passive/dusty gals at z>2Our new criteria (JHK): (J-K) > 2(H-K) + 0.5&& J-K>1.5 passive/dusty (2 < z < 3.3) +star-forming (2.4<z<3.1) J-K>2.3 -- r-JHK J-K<2.3 -- b-JHK

Kajisawa et al. (2006), Kodama et al. (2007)

JHK diagram (0943@z=2.923)

USS0943 (z=2.923)

GOODS-S (blank field)

Statistical excesses of both r-JHK and b-JHK are clearly seen (factor=2~4). Kodama et al. (2007)

原始銀河団中の銀河 (z~2,105億年前)

PKS1138 (z=2.156)

GOODS-S (blank field)

重くて赤い銀河の系列がはっきり見られ(星質量>10¹¹ M_☉)、 すでに大質量銀河が形成されている。

原始銀河団中の銀河 (z~3,115億年前)

USS0943 (z=2.923)

GOODS-S (blank field)

赤い銀河の密度超過は顕著に見られるが、 重い銀河はまだ出来ていない(星質量< $10^{11} M_{\odot}$)。

z~2の重い銀河のz~3での祖先は?

単に星形成を止めるだけでは駄目。活発な星形成や合体・降着が必要。

z=3から2の間の活発な星形成活動? (T_{univ}= 20~30億年)

Environmental dependence of stellar mass function: Theory

Red sequence at z~2.3 in the Field

Kriek et al. (2008)

Environmental dependence of age and stellar mass: Observation

Ages and stellar masses of galaxies in the protocluster are 2 times larger than in the Field.

Steidel et al. (2005)

Small environmental dependence of star formation epoch in early-type galaxies?

Only 4% (~0.4Gyr) difference in the present-day age.

But this is boosted at high redshift...

原始銀河団(HzRG)-近赤外撮像のまとめ

≻原始銀河団の集団化過程

電波銀河の周りに多数の赤い銀河がバンド状の大構 造(>10Mpc)をしている。銀河団スケールの集団化の 初期段階を見ていると考えられる。

≻大質量銀河の形成現場

大質量銀河(>10¹¹M_©)がzが3~2の間(20~30億年)に急速に作られたようである。環境依存性は?

→ 今後は、大質量銀河の形成現場を、多波長で観測し、星形 成バーストと合体と、どちらが効いているかを突き止める必要。

Submm sources in 7 proto-clusters (2.1<z<4.3) around radio galaxies

Stevens et al. (2007)

Summary for the Distant Clusters Surveys with Subaru

 Groups in the outskirts of clusters are the key hierarchy for truncation/transformation of galaxies.

→ Formation of S0s (and some Es)

• The redshift interval of 2<z<3 is the key era for the formation of massive galaxies in high-density regions.

→ Formation of Es (and some S0s)