Lyα Emitters とは何か? 階層的構造形成における 理論モデルの構築

京大理 宇宙物理学教室 D2 小林 正和 (学振特別研究員 DC2)

> 戸谷 友則(京大理) 長島 雅裕(長崎大)

Outline

1. Introduction

Lyα Emitters (LAEs) の観測的特徴、 再電離とLAEs、LAEs の先行研究

2. Mitaka model for LAE population

LAE モデルの詳細を紹介

3. Numerical Results

LAEs 観測データとの比較

4. Conclusion

5. Future works

Outline

1. Introduction

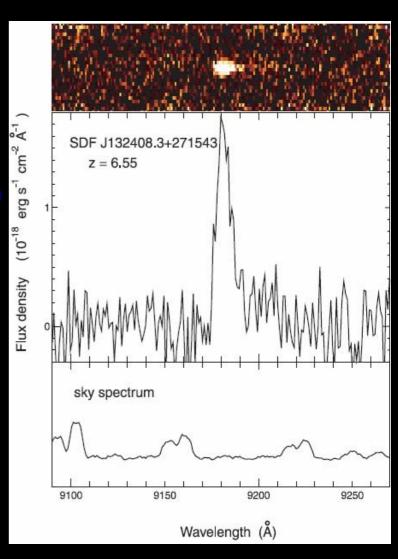
Lyα Emitters (LAEs) の観測的特徴、 再電離と LAEs、LAEs の先行研究

2. Mitaka model for LAE population

LAE モデルの詳細を紹介

3. Numerical Results

LAEs 観測データとの比較


4. Conclusion

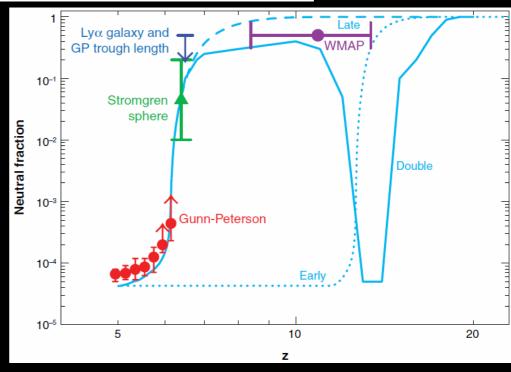
5. Future works

LAEs@high-z の観測的特徴

- ◆ narrow-band imaging で同定 される redshift した Lya 輝線を 放つ天体
- ◆ Lyman Break Galaxies (LBGs) より暗い continuum (~ undetected)
- ◆ LBGs より小さい angular size (~ point source)
- ♦ high number density (~ 10^{-3} Mpc⁻³ for L_{Lya} > 10^{42} erg/s)

最初の burst を体験中の 非常に著い銀河?

Taniguchi et al. (2005)

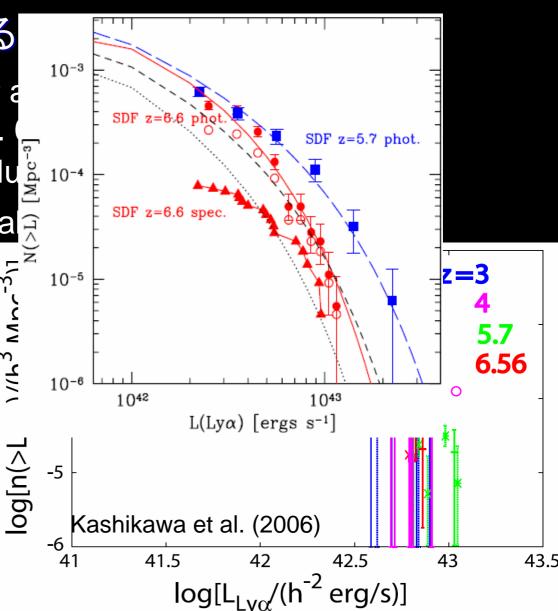

LAEs から探る宇宙の再電離

- ◆ Gunn-Peterson (GP) test に代わる有効な方法
 - GP test はそもそも GP optical depth が非常に大きいため、 再電離の終わり $(x_{HI} < 10^{-4})$ に感度がある

$$\tau_{\rm GP}(z) = 4.9 \times 10^5 \left(\frac{\Omega_m h^2}{0.13}\right)^{-1/2} \left(\frac{\Omega_b h^2}{0.02}\right) \left(\frac{1+z}{7}\right)^{3/2} \left(\frac{n_{\rm HI}}{n_{\rm H}}\right)$$

 LAEs の Lya emission が IGM の HI による吸収を 受けるのは x_{HI} > 0.1

LAE の光度関数 (LF) が redshift evolution しないと仮定すれば、観測された LF の変化から x_{HI} の情報が引き出せる



Fan et al. (2006)

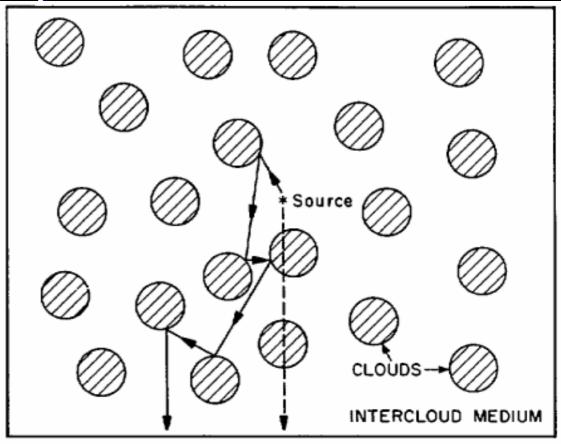
observational LFs of LAEs

- ◆ 中・大型望遠鏡による
 - SDF (e.g., Yamada et al.
 Kashikawa et al.
 - Keck (e.g., Cowie & Hu & 10-4
 - VLT (e.g, Kudritzki et a
 - LALA (Rhoads et al. 03)

この 10 年で LAE candidates の数は増え、信頼のおける光度関数(LF)が得られつつある

Ly a photon の性質

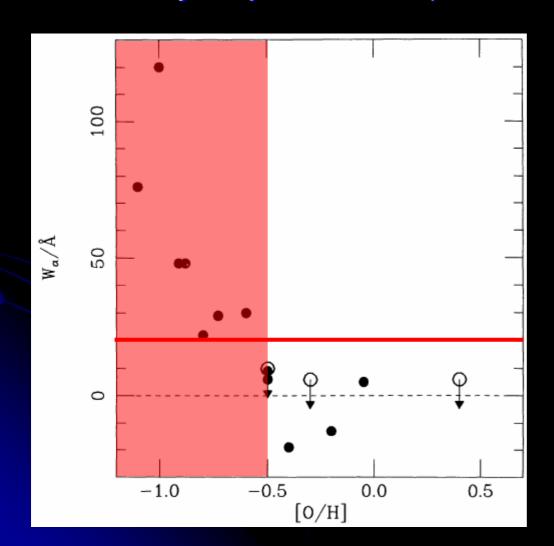
• Ly α = hydroge ionizing source


1 massive stars

② 重力エネルギ

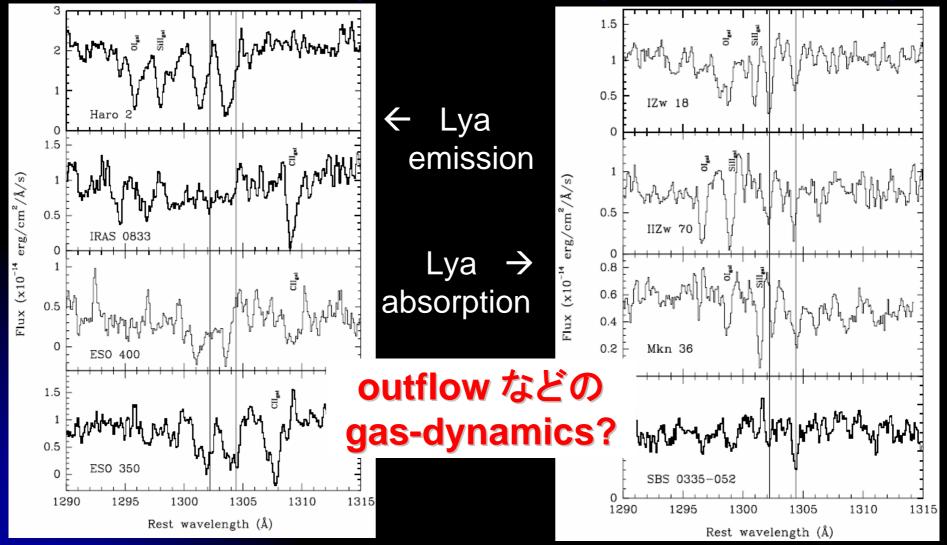
3 AGN (e.g. Os

lacktriangle Ly lpha = hydroger

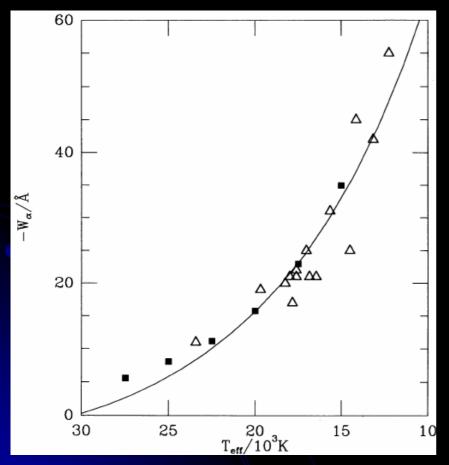

銀河の外に esca path-length は系 → dust による吸

ISM 中で dust が clumpy に分布していれば Lyα EW は大きくなりうる (Neufeld 1991)

Ly α emitting galaxies@low-z


metallicity dependence (Charlot & Fall 1993)

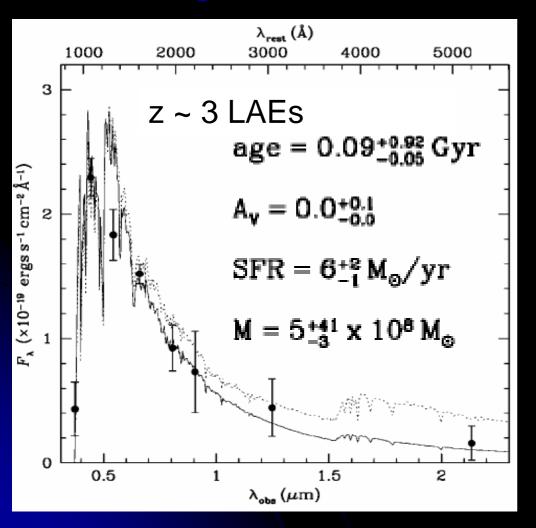
metallicity?


Ly α emitting galaxies@low-z

inter-stellar absorption features (Kunth et al. 1998)

Ly α emitting galaxies@low-z

stellar absorption (Charlot & Fall 93; Valls-Gabaud 91)



young burst
or
constant SF

Charlot & Fall (1993)

LAEs@high-z properties

stacking broad-band fluxes (Gawiser et al. 2006)

- high SFR
- young (10-100 Myr)
- almost dust-free
- low stellar mass

LAEの理論モデルの先行研究

◆ 解析的取り扱い(Haiman & Spaans 99; Thommes & Meisenheimer 05)

$$\frac{\mathrm{d}n_{\mathrm{LAE}}}{\mathrm{d}M_{\mathrm{star}}} \propto \frac{\mathrm{d}n_{\mathrm{halo}}}{\mathrm{d}M_{\mathrm{halo}}}, \ L_{\mathrm{Ly}\alpha}^{\mathrm{obs}} = L_{\mathrm{Ly}\alpha}^{\mathrm{int}} e^{-\tau_{*}}$$

gas-dynamical simulation (Barton et al. 04)

$$10 \ h^{-1}$$
 comoving Mpc, 2×324^3 particles

◆ SA モデル (Mao et al. 06; Le Delliou et al. 05, 06)
Mao: Granato et al. (2004) のモデル (monolithic collapse、
no merger tree) をベース

Le Delliou: GALFORM (Baugh et al. 2005) をベース

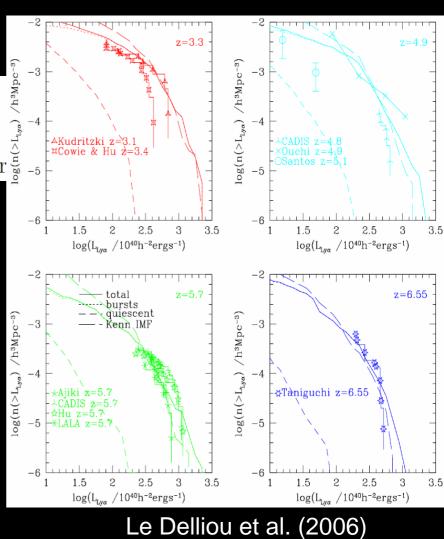
階層的構造形成の枠組みで構築され、 観測から得られた LF と比較できる これまでで唯一の LAE 理論モデル

Le Delliou et al. (2005, 2006)

◆ GALFORM (Baugh et al. 2005) をベース

burst 時 top-heavy IMF (x=0) gas rich minor merger → burst

$$\tau_{\star} = \tau_{\star 0} \left(V_c / 200 \text{ km s}^{-1} \right)^{\alpha_{\star}}$$


$$\tau_{\star \text{burst}} = \max \left[f_{\text{dyn}} \tau_{\text{dyn}}, \tau_{\star \text{burst,min}} \right]^{\frac{\alpha_{\star}}{2}}$$

$$f_{\text{dyn}} = 50, \tau_{\star \text{burst,min}} = 0.2 \text{ Gyr}^{\frac{\alpha_{\star}}{2}}$$

Lyαは星形成に起源

$$L_{\rm Ly\alpha}(t) \propto \psi(t) f_{\rm esc}$$

 $f_{\rm esc} = {\rm const} (= 0.02)$

Ly α photon の性質を考慮した f_{esc} を現象論的に与えると共に、 新たな観測データとの比較に f_{esc} = const のモデルが耐え 得るかを検証

Outline

1. Introduction

Lyα Emitters (LAEs) の観測的特徴、 再電離とLAEs、LAEs の先行研究

2. Mitaka model for LAE population

LAE モデルの詳細を紹介

3. Numerical Results

LAEs 観測データとの比較

- 4. Conclusion
- 5. Future works

Basic equations in Mitaka model

$$\psi(t) = \frac{M_{\text{cold}}(t)}{\tau_{*}} \propto \exp\left[-\frac{t}{\tau_{\text{eff}}}\right], \ \tau_{\text{eff}} \equiv \frac{\tau_{*}}{\alpha + \beta}$$

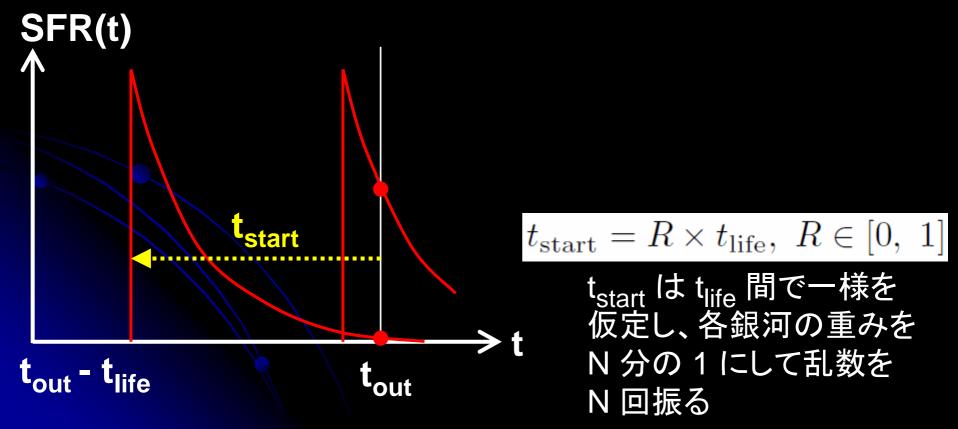
$$\tau_{*} \equiv \tau_{*}^{0} \left[1 + \left(\frac{V_{c}}{V_{\text{hot}}}\right)^{\alpha_{*}}\right] \qquad \tau_{*}^{\text{burst}} \equiv f_{*}^{\text{burst}} \tau_{\text{dyn}}$$

$$\beta = \left(\frac{V_{c}}{V_{\text{hot}}}\right)^{-\alpha_{\text{hot}}}$$

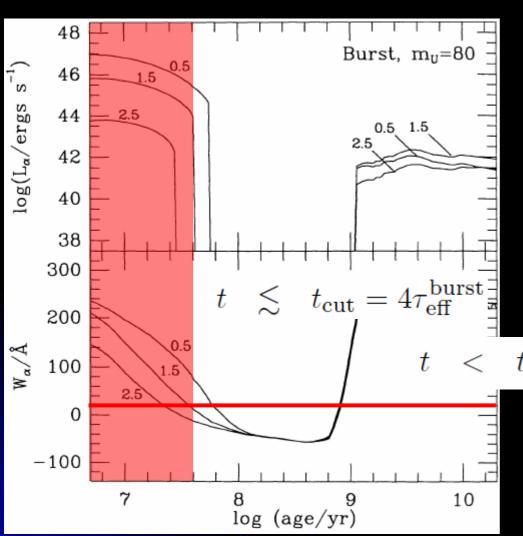
$$\dot{M}_{*} = \alpha \psi \qquad \qquad \tau_{*}^{0} = 1.3 \ t_{\text{Hubble}}$$

$$\dot{M}_{\text{cold}} = -(\alpha + \beta) \psi \qquad \qquad \alpha_{*} = -5.8$$

$$\dot{M}_{\text{cold}} = \beta \psi \qquad \qquad V_{\text{hot}} = 130 \ \text{km s}^{-1}$$


$$\dot{M}_{\text{hot}} = \beta \psi \qquad \qquad \alpha_{\text{hot}} = 4.0$$

$$\dot{M}_{\text{birst}} = 10$$


$$\dot{M}_{\text{birst}} = 10$$

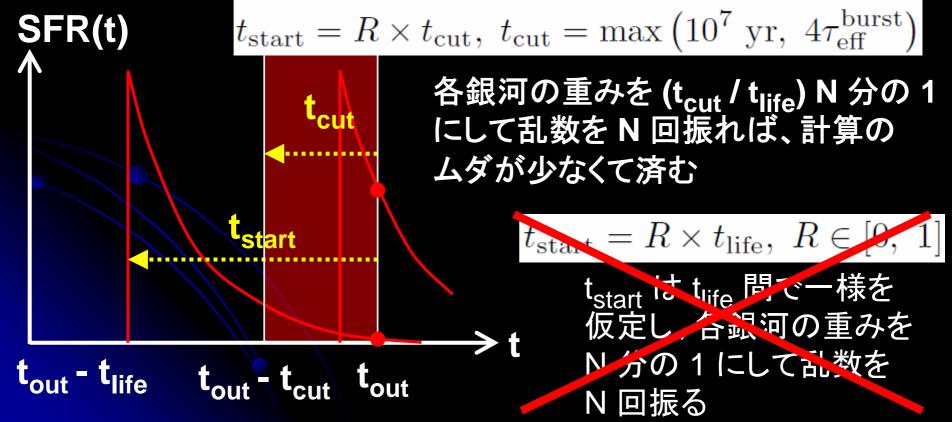
Starburst の取り扱い

$$\psi^{\text{burst}}(t) = \frac{M_{\text{cold}}(t)}{\tau_{*}^{\text{burst}}} \propto \exp\left[-\frac{t}{\tau_{\text{eff}}^{\text{burst}}}\right]$$
$$\tau_{\text{eff}}^{\text{burst}} = f_{*}^{\text{burst}} \frac{\tau_{\text{dyn}}}{\alpha + \beta}, f_{*}^{\text{burst}} = 10$$

Lyα で光っている時間

$$\psi(t) \propto \exp\left[-t/\tau_{\rm eff}^{\rm burst}\right]$$

$$\tau_{\rm eff}^{\rm burst} = 10^7 \text{ yr}$$


$$L_{\rm Ly\alpha}(t) \propto \dot{\mathcal{N}}_{\gamma}(t)$$

$$< t_{\rm cut} = \max \left[10^7 \text{ yr}, 4\tau_{\rm eff}^{\rm burst} \right]$$

Charlot & Fall (1993)

Starburst の取り扱い

$$\psi^{\text{burst}}(t) = \frac{M_{\text{cold}}(t)}{\tau_{*}^{\text{burst}}} \propto \exp\left[-\frac{t}{\tau_{\text{eff}}^{\text{burst}}}\right]$$
$$\tau_{\text{eff}}^{\text{burst}} = f_{*}^{\text{burst}} \frac{\tau_{\text{dyn}}}{\alpha + \beta}, \ f_{*}^{\text{burst}} = 10$$

Ly a line luminosity の計算法(1)

$$L_{\text{Ly}\alpha}^{\text{int}}(t) = \dot{\mathcal{N}}_{\text{Ly}\alpha}(t)h\nu_{\text{Ly}\alpha}$$

$$= \dot{\psi}(t) \times \left(\frac{\dot{\mathcal{N}}_{\gamma}(t)}{\dot{\psi}(t)}\right) \times \left(\frac{\dot{\mathcal{N}}_{\text{Ly}\alpha}(t)}{\dot{\mathcal{N}}_{\gamma}(t)}\right) \times h\nu_{\text{Ly}\alpha}$$

$$= 1.366 \times 10^{42} \left(\frac{\dot{\psi}(t)}{1.0 \text{ M}_{\odot} \text{ yr}^{-1}}\right) \text{ [erg s}^{-1}\text{]}$$

case B recombination (=0.677)

massive star の大気モデルの不定性 (factor ~ 2)、 metallicity 依存性 (Solar と Pop III で factor ~ 6)

$$L_{\rm Ly\alpha}^{\rm obs}(t) = L_{\rm Ly\alpha}^{\rm int}(t) \times f_{\rm esc}^{\rm Ly\alpha}(N_{\rm cold}(t)Z_{\rm cold}(t), v_{\rm out}(t))$$

$$N_{\rm cold}(t) \equiv \frac{M_{\rm cold}(t)/2}{\pi r_{\rm eff}^2(t)}, \ v_{\rm out}(t) \equiv \frac{r_{\rm eff}(t)}{\tau_{\rm eff}(t)}$$

Ly a line luminosity の計算法(2)

$$\psi^{\text{burst}}(t) = \frac{M_{\text{cold}}(t)}{\tau_{*}^{\text{burst}}} \propto \exp\left[-\frac{t}{\tau_{\text{eff}}^{\text{burst}}}\right]$$
$$\tau_{\text{eff}}^{\text{burst}} = \left(f_{*}^{\text{burst}} \frac{\tau_{\text{dyn}}}{\alpha + \beta}, f_{*}^{\text{burst}} = 10\right)$$

$$t_{\rm start} = R \times t_{\rm cut}, t_{\rm cut} = \max(10^7 \text{ yr}, 4\tau_{\rm eff}^{\rm burst})$$

t < $t_{\rm cut}$

最小の effective burst timescale (例えば~106 yr)を設けた方がよい?

$$L_{\rm Ly\alpha}^{\rm int}(t) \propto \psi(t) \text{ for } 4\tau_{\rm eff}^{\rm burst} > 10^7 \text{ yr}$$

$$\psi(t=0) \text{ otherwise}$$

—— 本当はこうするべき? 現段階ではともに SFR(t) に 比例させている

t_{dyn} が短い銀河で t_{cut} を 10⁷ yr とした意味がない

Models of Ly α escape fraction

◆ Ly α photon の性質や low-z の Ly α emitting galaxies の観測結果を考慮した4つのモデル

$$f_{\rm esc}^{\rm Ly\alpha} = \begin{pmatrix} f_{\rm esc}^0 : {\rm simply \ proportional} \\ \begin{pmatrix} f_{\rm esc}^0 \\ {\rm esc} \end{pmatrix} \exp \left[\frac{N_{\rm cold} Z_{\rm cold}}{(N_{\rm cold} Z_{\rm cold})^0} \right] : {\rm dust \ (screen)} \\ \begin{pmatrix} f_{\rm esc}^0 \\ \frac{1-e^{-x}}{x} \\ \end{pmatrix}, \ x \equiv \frac{N_{\rm cold} Z_{\rm cold}}{(N_{\rm cold} Z_{\rm cold})^0} : {\rm dust \ (slab)} \\ \begin{pmatrix} f_{\rm esc}^0 \\ \end{pmatrix} \left(1 - \exp \left[-\frac{v_{\rm out}}{v_{\rm cut}} \right] \right) : {\rm outflow} \\ \end{pmatrix}$$

LAEs の光度関数

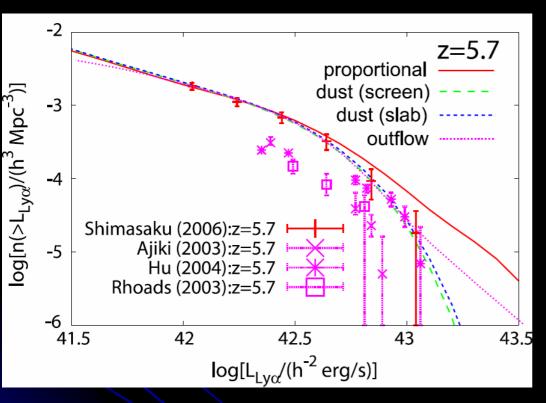
SA モデル

$$L_{\text{Ly}\alpha}^{\text{int}}(t) = 1.366 \times 10^{42} \left(\frac{\psi(t)}{1.0 \text{ M}_{\odot} \text{ yr}^{-1}} \right) \text{ [erg s}^{-1} \text{]}$$

intrinsic Lyα 光度関数

$$L_{\mathrm{Ly}\alpha}^{\mathrm{obs}}(t) = L_{\mathrm{Ly}\alpha}^{\mathrm{int}}(t) f_{\mathrm{esc}}^{\mathrm{Ly}\alpha} \left(N_{\mathrm{cold}}(t) Z_{\mathrm{cold}}(t), v_{\mathrm{out}}(t) \right)$$

LF (1)


LF 2

LF 3

LF 4

observed Lyα 光度関数

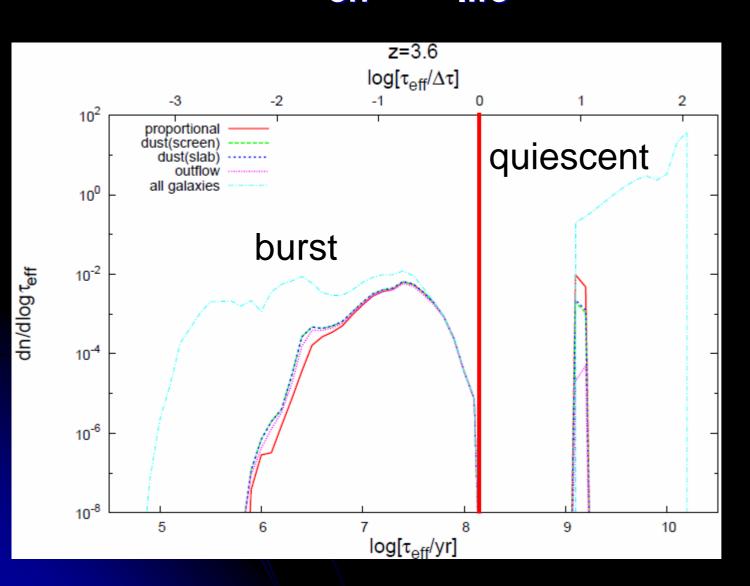
fesc のパラメータの決め方

- Shimasaku et al. 06 の LAE LF@z~5.7 に最も よく合うように選ぶ
- 得られたパラメータの値は redshift 依存しない一定の 値とする

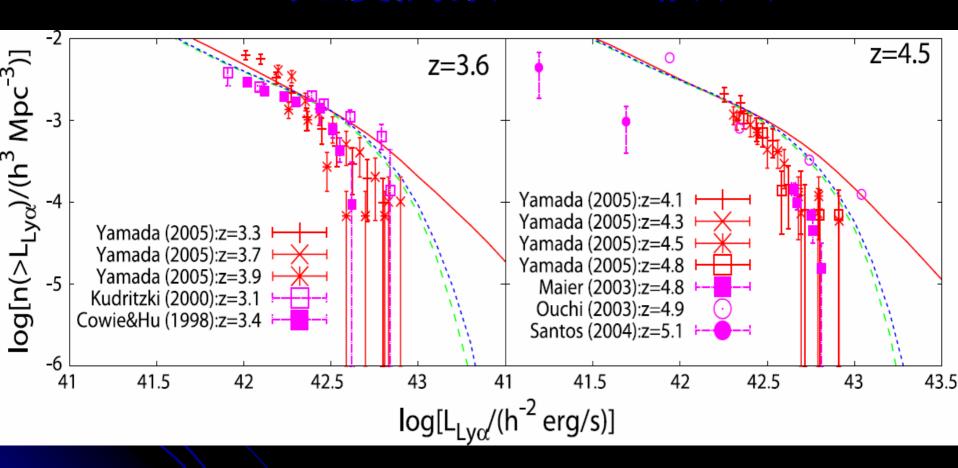
Model	$f_{ m esc}^0$	$(N_{\rm cold}Z_{\rm cold})^0 \ [10^{21} \ {\rm cm}^{-2}]$	$v_{\rm cut}~[{\rm km~s^{-1}}]$
simply proportional	0.24	_	_
$\operatorname{dust} (\operatorname{screen})$	0.30	4.0	_
dust (slab)	0.30	2.0	_
outflow	0.28	_	6.5

Outline

1. Introduction

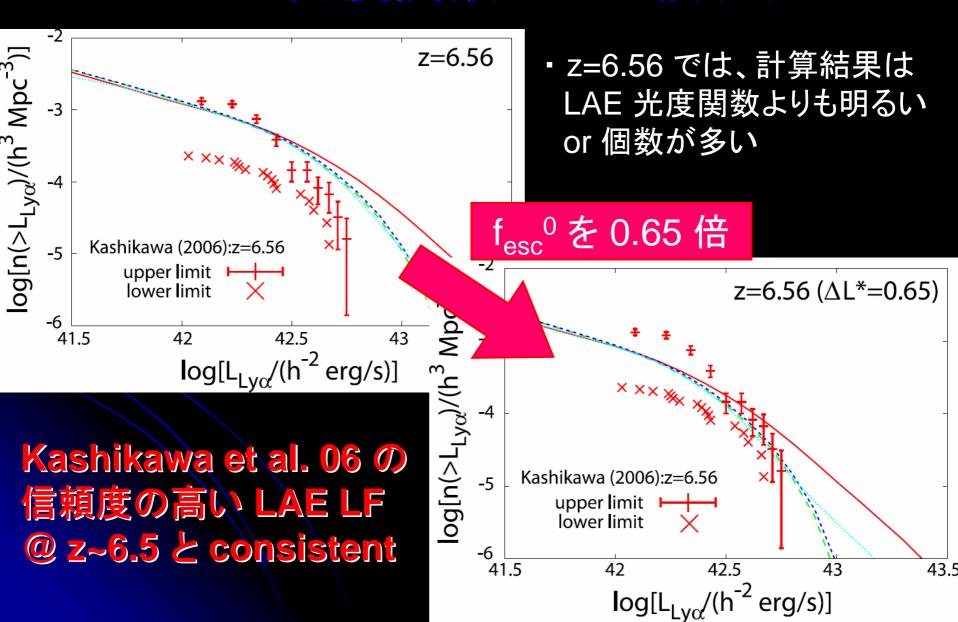

Lyα Emitters (LAEs) の観測的特徴、 再電離とLAEs、LAEs の先行研究

2. Mitaka model for LAE population

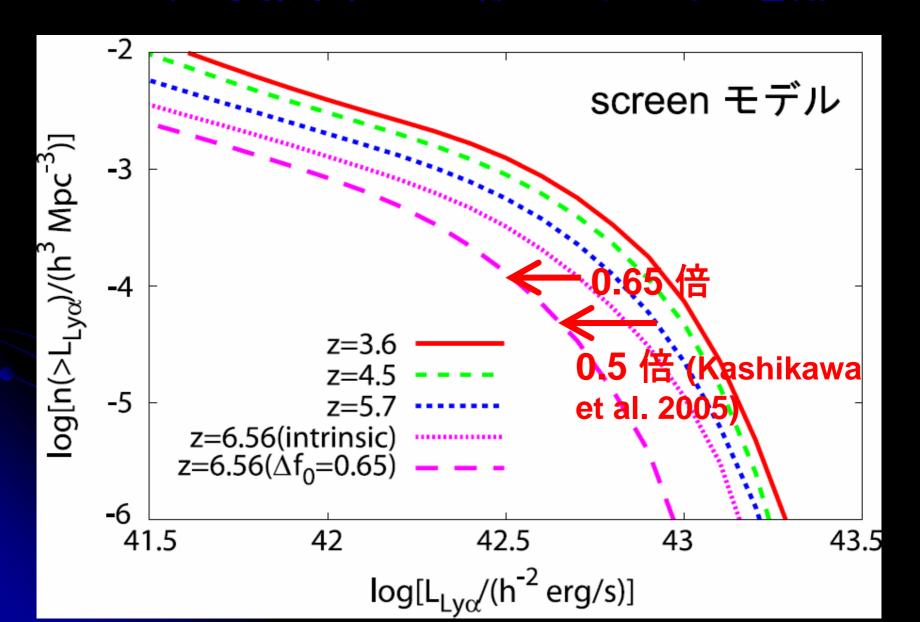

LAE モデルの詳細を紹介

- 3. Numerical Results
 LAEs 観測データとの比較
- 4. Conclusion
- 5. Future works

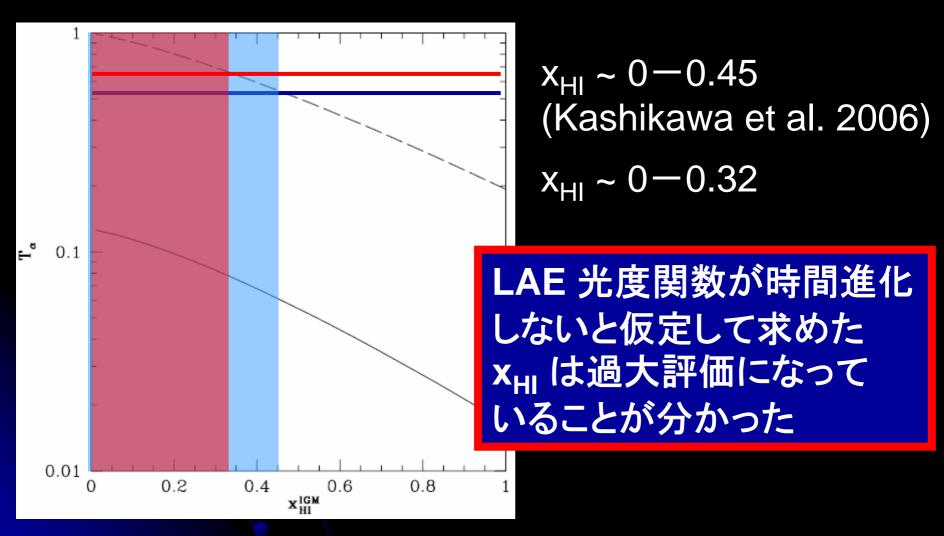
τ_{eff}とt_{life}の分布



LAE 光度関数との比較(1)



赤方偏移 3.6, 4.5 ともに、ダストの効果を加味した 我々のモデルの方が LAE 光度関数の新しい データ(赤色データ)もよく再現できている


LAE 光度関数との比較(2)

LAE 光度関数から読み取る再電離

XHI@z~6.5 の具体的評価

Santos (2004)

Outline

1. Introduction

Lyα Emitters (LAEs) の観測的特徴、 再電離とLAEs、LAEs の先行研究

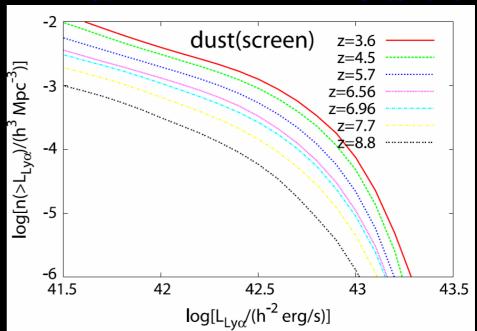
2. Mitaka model for LAE population

LAE モデルの詳細を紹介

3. Numerical Results

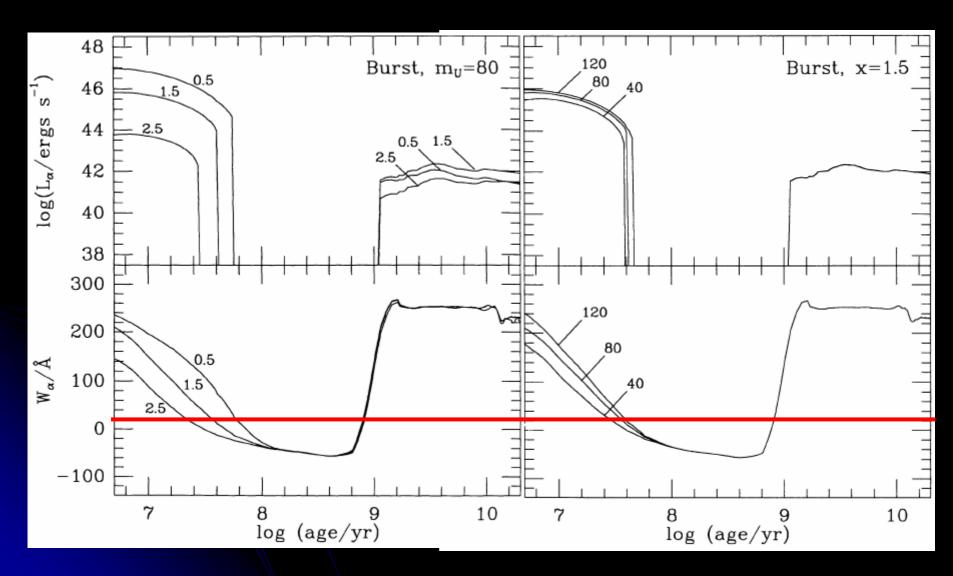
LAEs 観測データとの比較

- 4. Conclusion
- 5. Future works

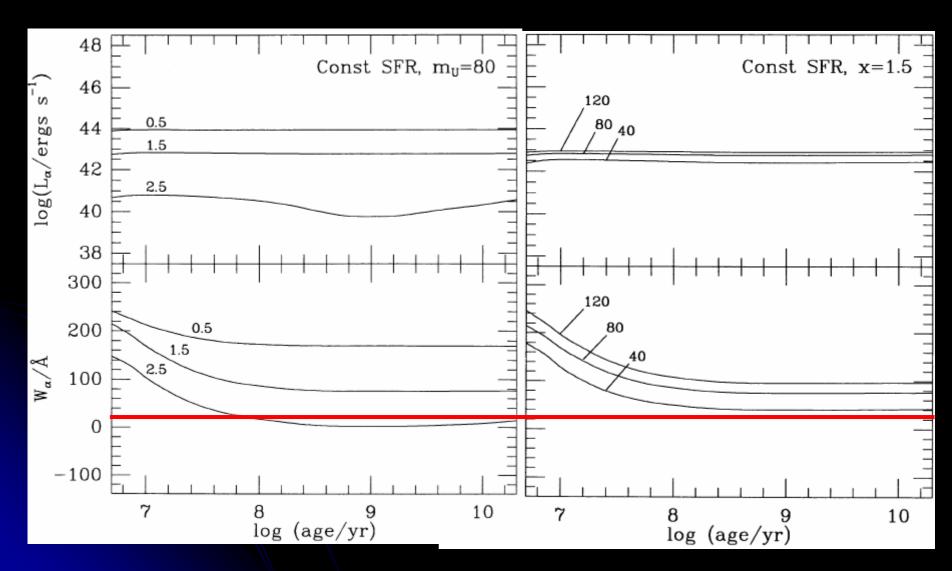

Conclusion

- ◆ 階層的構造形成の枠組みでの LAE 理論 モデルを構築
 - LAE の光度関数を統計的に予言できる理論モデルとして、Le Delliou et al. に続き世界で2例目
 - 初めて Ly α photon の離脱率にダスト・outflow の 効果を加味し、新たな観測データとの比較を行った
 - これらの効果を加味していない先行研究に比べ LAE 光度関数をよりよく再現できた
 - LAE 光度関数は intrinsic evolution でわずかに暗くなっており、これまでの仮定からは x_{HI} を過大評価しているかもしれないことが分かった

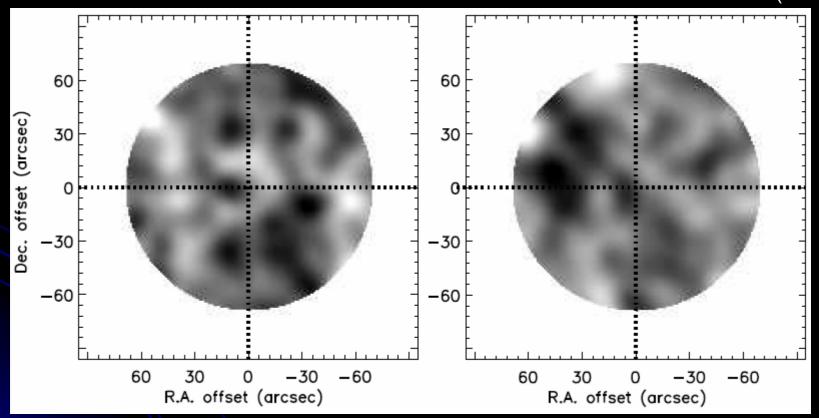
Future Work

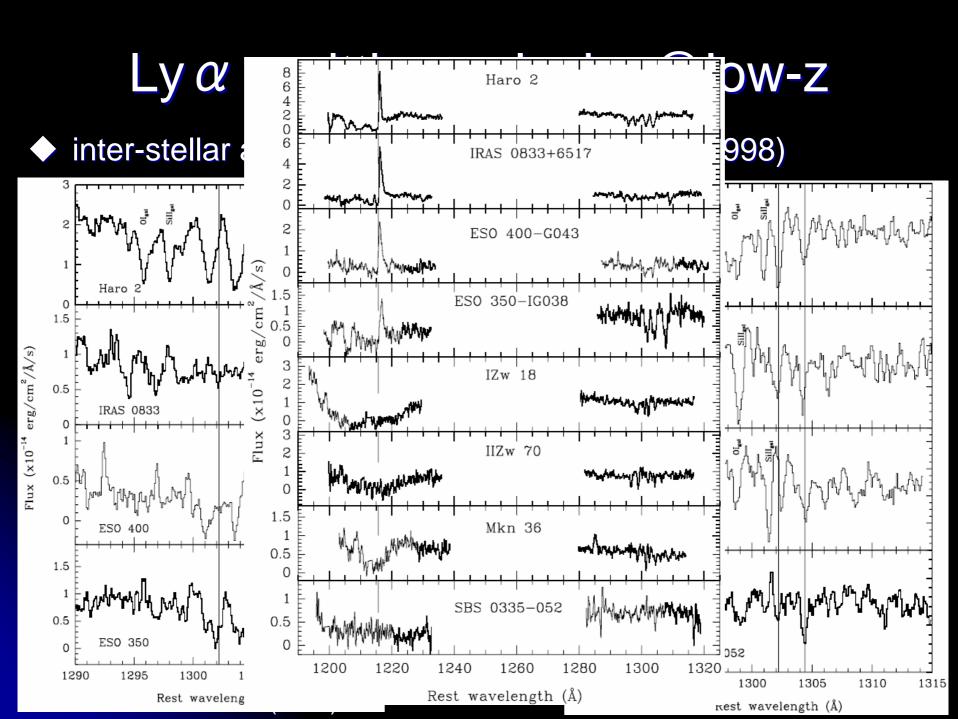

- ◆ clustering の観測データとの比較 理論モデルの信頼性を調べる
- ◆ LAE の物理的性質の予言
 mass of hosting DM halo, stellar mass, metallicity, etc.
- ◆ IGM が transparent な場合の LAE 光度関数

→ x_{HI}IGM(z) の予言



Lyα EWs の比較: starburst


Lyα EWs の比較: constant SF


LAEs の観測データ(3)

• sub-mm imaging (Webb et al. 2006) $z \sim 6.5 \text{ LAEs } 850 \text{ um maps } (> 3.5 \sigma)$

Webb et al. (2006)

low dust mass (< 108 Msun)

観測データの比較

Name	redshift	$> \mathrm{EW_c^{rest}}$ [Å]	$V [h^3 \mathrm{Mpc}^{-3}]$	$L_{\mathrm{Ly}\alpha}^{\mathrm{low}} [h^{-2} \mathrm{erg s}^{-1}]$	$N(>L_{\mathrm{Ly}\alpha}^{\mathrm{low}}) [h^3 \mathrm{Mpc}^{-3}]$
Kudritzki (2000)	3.1		2.23×10^{3}	8.13×10^{41}	3.89×10^{-3}
Yamada (2005)	3.3		$1.15 imes 10^5$	1.02×10^{42}	6.36×10^{-3}
Cowie (1998)	3.4			1.05×10^{42}	2.95×10^{-3}
Yamada (2005)	3.7		$1.25 imes 10^5$	1.57×10^{42}	4.12×10^{-3}
Yamada (2005)	3.9		$1.32 imes 10^5$	1.81×10^{42}	1.37×10^{-3}
Yamada (2005)	4.1		1.32×10^{5}	1.79×10^{42}	2.14×10^{-3}
Yamada (2005)	4.3		$1.39 imes 10^5$	2.02×10^{42}	1.19×10^{-3}
Yamada (2005)	4.5		$1.41 imes 10^5$	2.11×10^{42}	1.03×10^{-3}
Maier (2003)	4.8		$ imes 10^5$	4.47×10^{42}	1.45×10^{-4}
Yamada (2005)	4.8		$1.30 imes 10^5$	2.31×10^{42}	1.06×10^{-3}
Ouchi (2003)	4.9		$ imes 10^5$	8.71×10^{41}	5.89×10^{-3}
Santos (2004)	5.1		$ imes 10^5$	1.55×10^{42}	4.47×10^{-3}
Shimasaku (2006)	5.7		6.18×10^{4}	1.10×10^{42}	1.83×10^{-3}
Hu (2004)	5.7			2.24×10^{42}	2.45×10^{-4}
Ajiki (2006)	5.7		6.10×10^{4}	2.45×10^{42}	3.09×10^{-4}
Rhoads (2003)	5.7			3.09×10^{42}	1.48×10^{-4}
Kashikawa (2006)	6.56		7.45×10^{4}	1.23×10^{42}	1.63×10^{-3}