# **Evolution of Damped Lyman** $\alpha$ Systems from Hierarchical Structure Formation Models

Katsuya Okoshi (The University of Electro-communications) Okoshi, Nagashima, Gouda and Yoshioka 2004 ApJ, 603,12 Okoshi and Nagashima 2005 ApJ, 623,99 Okoshi,Nagashima and Gouda 2006 submitted to ApJ





# **QSO Absorption Systems**

| Types     | redshift | Log N(HI) | Origin                                  |  |  |  |
|-----------|----------|-----------|-----------------------------------------|--|--|--|
| Lyα cloud | 0-4.5    | 13-17     | Intergalactic cloud or/and galactic gas |  |  |  |
| LLS       | 1-4.0    | 17-20     | ???                                     |  |  |  |
| DLA       | 0-4.5    | 20-22     | galactic disk gas (?)                   |  |  |  |
| CIV       | 1-3.5    |           | halo hot gas (10 <sup>5</sup> K)        |  |  |  |
| Mg II     | 0-2.2    |           | halo warm gas (10 <sup>3</sup> K)       |  |  |  |

# 1. Introduction なぜDLA Systemに注目するのか?

1. High HI column density system  $N_{\rm HI} > 10^{20.3} \, {\rm cm}^{-2}$ 

Optically Thick (!) Systems  $N_{HI} > 10^{17} \text{ cm}^{-2}$ 

Star Formation Process の解明

(cf. Surface density in the disk of the Milky Way;  $N_{gas}$ =55 ±10  $M_{\odot}pc^{-2}$ =10<sup>21.8</sup> cm<sup>-2</sup>)

2. More abundant systems at high redshift

**多数のシステムが見つかりやすい(Typical L\*-galaxy の10**倍以上)

3. Precise measurements of metal abundance in GAS (not STAR) Mild metallicity evolution (0 <z< 4.5)

/

典型的な(massive spiral)銀河と比較すると・・・

$$\left(\frac{\mathrm{dN}}{\mathrm{dz}}\right)_{\text{typical}\atop\text{galaxy}} = \Phi_{\mathbf{g},0} (1+\mathbf{z})^3 \pi \mathbf{R}_{\mathbf{g}}^2 \frac{\mathbf{c}}{\mathbf{H}_0 \Omega^{1/2} (1+\mathbf{z})^{5/2}} \approx 0.02 \Omega^{1/2}$$

$$(z = 3; \Phi_{g,0} = 0.01 h^3 Mpc^{-3}, R_g = 10 h^{-1} kpc)$$

$$\left(\frac{\mathrm{dN}}{\mathrm{dz}}\right)_{\mathrm{DLA}} \approx 10 \left(\frac{\mathrm{dN}}{\mathrm{dz}}\right)_{\mathrm{typical}}$$

# **Redshift Distribution**



Prochaska et al. 2004

3. Precise measurements of metal abundance in GAS (not STAR)

125 DLAsからGas Metallcityを測定

Mild metallicity evolution (0 <z< 4.5) (e.g., Prochaska et al.2003)

4. Dust-poor system (cf typical galaxy)

Small amount of dust (e.g. E(B-V)<0.01: Murphy & Liske 2004) No evidence for a statistically significant dust bias in MgII-selected DLA surveys at 0.5 < z(abs) <3.5 (Ellison et al. 2001, 2004)

>> 'Unbiased' Tracer : Metallicity Evolution of Pre-galactic System

>> Stringent Constraints on Galaxy Formation



Prochaska et al. 2003

DLA contains a significant fraction of the HI gas in the universe!

 $\Omega(HI) \sim 10^{-3} at 0 < z < 4$ 

$$\begin{split} \Omega_{\rm DLA} &\propto \int N_{\rm HI} \frac{\partial^2 N}{\partial N_{\rm HI} \partial z} dN_{\rm HI} \\ &\quad \frac{dN}{dN_{\rm HI}} \propto N_{\rm HI}^{-\beta} \,\, (\beta = 1.4 \text{-} 1.6; \, \text{Rao et al. 2005; Prochaska et al. 2004}) \\ \Omega_{\rm DLA} &\propto \int N_{\rm HI} N_{\rm HI}^{-\beta} dN_{\rm HI} \propto \int N_{\rm HI}^{1-\beta} dN_{\rm HI} \\ &\propto [N_{\rm HI}^{2-\beta}]^{N_{\rm HI}(max)} \sim N_{\rm HI} (max)^{2-\beta} \end{split}$$

HI ガスのほとんどが、DLAに存在している!

# Gas Density





# **Semi-Analytic Approach to Structure Formation**



# 2. Model

Dark Halos *D* Merging **Process** 

Probability Function f( M,z | M',z')dM: Halo (mass M' redshift z') has a progenitor (M,z)

>> Press-Schechter Mass Function n(M,z | M',z')



**Density perturbations** 



# ガスの進化過程について

#### (A) Life time

Life time of halo is equal to cooing time of gas

$$\mathbf{t}_{\text{life}} = \tau_{\text{cool}} \left( \mathbf{r}_{\text{cool}} \right) = \frac{2}{3} \frac{\rho_{\text{gas}} \mathbf{r}_{\text{cool}}}{\mu m_{p}} \frac{\mathbf{kT}}{\mathbf{n}_{e}^{2} \mathbf{r}_{\text{cool}} \Lambda(\mathbf{T})} \quad (\rho_{\text{gas}}(\mathbf{r}) \propto \mathbf{n}_{e}(\mathbf{r}) \propto \mathbf{r}^{-2})$$

**(B) Star Formation Process** 

$$\mathbf{\dot{M}}_{*} = \frac{\mathbf{M}_{\text{cold}}}{\tau_{*}}$$

$$\tau_{*} = \tau_{*}^{0} \left( \frac{\mathbf{V}_{c}}{300 \text{ km } / \text{ s}} \right)^{\alpha_{*}} (1 + \mathbf{z})^{\alpha_{z}}$$

 $\alpha_{z} = -1.5(\infty t_{dyn}) \text{ :accelerated efficiency model}$   $\mathbf{0} \qquad \text{: constant efficiency model}$   $\tau_{*}^{0} \cong 2 - 5 \mathbf{Gyr}(\mathbf{M} / \mathbf{L}_{\mathbf{B}} - \mathbf{V}_{\mathbf{c}} \mathbf{relation})$   $\mathbf{\tau}_{*}^{0}, \boldsymbol{\alpha}_{*}, \boldsymbol{\alpha}_{\mathbf{z}}$ 

#### (C) Supernovae Feedback

**Energy input by SN explosions** 

$$\frac{\mathbf{dM}_{\mathbf{rehaeat}}}{\mathbf{dt}} = \varepsilon \frac{4}{5} \frac{\eta_{\mathbf{SN}} \mathbf{E}_{\mathbf{SN}}}{\mathbf{V}_{\mathbf{c}}^2} \mathbf{\dot{M}}_{*} \left( = \beta \mathbf{\dot{M}}_{*} \right)$$

$$\begin{split} \beta(\mathbf{V}_{c}) &= \left(\frac{\mathbf{V}_{c}}{\mathbf{V}_{hot}}\right)^{-\alpha_{hot}} \\ &: \text{ input efficiency} \\ \epsilon &: \text{ fraction of stars } \mathbf{M} \geq 8\mathbf{M}_{\Theta} \\ \frac{\eta_{sN}}{\mathbf{E}_{sN}} &: \text{ energy release per a SN } (=10^{51} \text{erg}) \\ \alpha_{hot} \\ \vdots \\ \alpha_{hot} \\ \vdots \\ \end{split}$$

(D) Population Synthesis

**Total Luminosity** 

$$\mathbf{L}_{*} = \int \mathbf{M}_{*} \mathbf{Z}_{cold} \mathbf{dt}$$

Stellar population synthesis model

#### (F) Chemical Evolution

**Basic Equation for 2 phase model (Cold and Hot gas components)** 

$$\begin{aligned} \frac{dM_{c}}{dt} &= -\dot{M}_{*} + F(t)(1-f) + g(t) - \beta \dot{M}_{*} \\ \frac{dM_{*}}{dt} &= \frac{M_{c}}{\tau_{*}} \\ \frac{dM_{h}}{dt} &= \beta \dot{M}_{*} - g(t) + F(t)f + A(t) \\ g(t) &= 4\pi\rho_{h}(r_{cool})r_{cool}^{2}\frac{dr_{cool}}{dt} \cong \frac{M_{c}^{0}}{\tau} \\ \frac{dM_{c}Z_{c}}{dt} &= (1-f)(F_{Z}(t) + R_{Z}(t)) - Z_{c}\dot{M}_{*} + Z_{h}g(t) - Z_{c}\beta \dot{M}_{*} \\ \frac{dM_{h}Z_{h}}{dt} &= f(F_{Z}(t) + R_{Z}(t)) + Z_{c}\beta \dot{M}_{*} - Z_{h}g(t) + Z_{d}A(t) \end{aligned}$$

 $\beta$ : SN feedback g: cooling gas inflow

F: gas inflow from stars Fz: metal mass produced by new stars Rz: metal mass inflow A: gas mass accreted from diffuse matter(=0)

#### Here we apply 'Instantaneous Recyclic Approximation'.

**銀河のMerging Processes** 

Dark halosのmerging process

Hot gas は新しくできた一つのhaloの中で共有する。

最もmassiveな銀河を'central galaxy'とし、それ以外の銀河を'satellites'と呼ぶ。

このとき、これらの銀河どうしがmergeする。

Criteria for merging processes of galaxies

Satellite-Central merger : t (elapse) > t (dynamical friction) Satellite-Satellite merger: t > t (random collision) Type of merging processes (satellites v central galaxy)

**Two types: Major and Minor merge** 



#### **Reference Models**

## standard models in galaxy formation model

 $(\Omega_{0}, \Omega_{\Lambda}, \mathbf{h}, \sigma_{8})$ LCDM (0.3, 0.7, 0.7, 1)

$$\begin{array}{c} (V_{hot} \ (km \ / \ s), \alpha_{hot} \ , \tau_{*}^{0}, \alpha_{*}) \\ \mbox{LC} & (280, \ 2.5, \ 1.5, \ -2 \ ) \ (Reference \ Model) \\ \mbox{LD} & (280, \ 2.5, \ 4, \ -2 \ ) \end{array}$$

Astrophysical parameters are given by as follows:

**1. Galaxy luminosity function (B- and K- bands)** 

$$\alpha_{hot}$$
 ,  $V_{hot}$ 

(<< SN feedback process)

**2. Cold-gas mass fraction** 

すべて local galaxyに関する観測量で決める

# **DLA**の同定

1. HI Central column density

$$N_{\rm HI}(0) = \frac{M_{\rm HI}(\tau = 0)}{\pi \tau_d^2}$$

2. Inclination of gaseous disks

$$N_{
m HI,c} = rac{N_{
m HI}(0)}{\mu} ~~(\mu = \cos heta : inclination)$$

**3.Disk size** 

**Exponential profile** 

$$N_{
m HI}(\tau) = N_{
m HI,c} \exp(- au/ au_{
m d})$$

 $R(DLA) = r(N_{HI} = 10^{20.3} \text{ cm}^{-2})$ 

#### 4. Average of HI column density

$$< N_{\rm HI} > = \int_0^{R(DLA)} N_{\rm HI}(\tau) d(\pi \tau^2) / \pi R(DLA)^2$$



### § 3. RESULTS

#### [A] GLOBAL PROPERTIES OF DLA SYSTEMS



#### Metallicity of cold gas in DLA systems

solid line: Our best model dotted line: stellar metallicity dashed line: a model with *τ* \*∝dynamical timescale of disks (LD model) observational data: Prochaska and Wolfe 2000, Savaglio 2001

The metallicity shows mild evolution.
The star formation timescale should be nearly constant



#### HI column density distribution

solid line: Our best model observational data: Prochaska and Wolfe 2000

•Our model reproduces the HI column density distribution.



Average mass evolution of each phase: cold gas (dashed line), stars(soild line), metals(dotted line)

#### Metallicity weighted by mass

cold gas in DLAs (long-dashed line) cold gas in all galaxies (dot-dahed line)

- $\cdot$  The average HI mass M(HI) is ~10 $^9 M_{\odot}$
- Chemical enrichment in DLAs is similar to that in all galaxies

論点:

 DLAのhost galaxyはどのような特徴をもつのか?
 Compact object: galactic disk, minihalo, ...?
 Diffuse gas: filament, clump, ...?

- ⇒ Low redshifts (0<z<1)の様々な観測的特徴に 注目。
- ⇒ typical galaxiesと比較しながら、DLAのhost galaxyを探る。

#### [B] Low-redshift DLA systems

We focus on DLA systems at redshift 0<z<1 ⇒ What are DLA galaxies ?</li>
 Luminosity, HI column density, size etc. ← photometric counterparts (e.g. Rao et al.2003, Rao 2005 Proceedings of IAU conference No.199)



| QSO                | <sup>z</sup> DLA | $N_{\rm H{\scriptstyle I}}/10^{20}$ (atoms cm <sup>-2</sup> ) | Luminosity <sup>a</sup>                        | b<br>(kpc) | Morphology                    | Reference |
|--------------------|------------------|---------------------------------------------------------------|------------------------------------------------|------------|-------------------------------|-----------|
|                    |                  |                                                               | This Work                                      |            |                               |           |
| B2 0827+243        | 0.525            | 2.0                                                           | $0.8L_B^*, 1.6L_R^*, 1.2L_K^*$                 | 34         | Disturbed spiral              | 1         |
| PKS 0952+179       | 0.239            | 21                                                            | $0.02L_{K}^{*b}$                               | <4.5       | Dwarf LSB                     | 1         |
| PKS 1127-145       | 0.313            | 51                                                            | $0.12L_{B}^{*}, 0.16L_{R}^{*}, 0.04L_{K}^{*c}$ | <6.5       | Patchy/irr/LSB                | 1         |
| PKS 1629+120       | 0.532            | 5.0                                                           | $0.6L_B^*, 1.1L_R^*, 0.6L_K^*$                 | 17         | Spiral                        | 1         |
|                    |                  | C                                                             | Other Work                                     |            |                               |           |
| AO 0235+164        | 0.524            | 45 <sup>e</sup>                                               | $0.8L_{B}^{*}$                                 | 6.0        | Late-type spiral <sup>e</sup> | 2, 3      |
| EX 0302-223        | 1.010            | 2.3                                                           | $0.2L_B^*$                                     | 9.2        | Semicompact                   | 4         |
| PKS 0454+039       | 0.859            | 4.7                                                           | $0.4L_B^{*}$                                   | 6.4        | Compact                       | 4         |
| Q0738+313 (OI 363) | 0.091            | 15                                                            | $0.08\tilde{L}_{K}^{*}$                        | <3.6       | LSB                           | 5         |
|                    | 0.221            | 7.9                                                           | $0.1L_{R}^{*}$                                 | 20         | Dwarf spiral                  | 5         |
| Q0809+483 (3C 196) | 0.437            | 6.3                                                           | $1.7L_{R}^{*}$                                 | 9.6        | Giant Sbc                     | 4         |
| Q1209+107          | 0.633            | 2.0                                                           | $1.6L_{R}^{*}$                                 | 11.2       | Spiral                        | 4         |
| PKS 1229-021       | 0.395            | 5.6                                                           | $0.1L_{B}^{*}$                                 | 7.6        | LSB                           | 4,6       |
| Q1328+307 (3C 286) | 0.692            | 15                                                            | $0.4L_{B}^{*}$                                 | 6.5        | LSB                           | 4,6       |
| Q1622+239 (3C 336) | 0.656            | 2.3                                                           | $< 0.05L_{K}^{*}$                              |            | LSB? compact?                 | 7         |

TABLE 4Low-Redshift DLA Galaxy Properties

NOTE.—Only galaxies with cosmological redshifts are included. Thus, the DLA galaxy at z = 0.010, SBS 1543+593, is excluded, since it does not fall well beyond the local velocity field, which is defined at 3000 km s<sup>-1</sup> by the outer boundary of the Virgo cluster (Binggeli, Popescu, & Tammann 1993). We note that it is an LSB galaxy, with  $L_B = 0.02L_B^*$  and b = 0.8 kpc (Bowen, Tripp, & Jenkins 2001; R. E. Schulte-Ladbeck et al. 2003, in preparation).

<sup>a</sup>  $M_B^* = -20.9$  (Marinoni et al. 1999),  $M_R^* = -21.2$  (Lin et al. 1996), and  $M_K^* = -24.5$  (Loveday 2000), for  $q_0 = 0.5$  and  $H_0 = 65$  km s<sup>-1</sup> Mpc<sup>-1</sup>.

<sup>b</sup> Sum of luminosities of objects 1 and 2 (see § 3.2.2 and Fig. 3).

<sup>c</sup> Sum of luminosities of objects 1, 3, and 4 (see § 3.3.1 and Fig. 4).

<sup>d</sup> Column density from Turnshek et al. 2003.

<sup>e</sup> The object defined as A1 in Yanny, York, & Gallagher 1989 and Burbidge et al. 1996 has the smallest impact parameter and, therefore, we have assumed that it is the DLA galaxy. A K-correction of 1 mag, which is appropriate for a late-type spiral galaxy at z = 0.524(Descine ti 1007) has been emplied to derive the shocket humin solution of A1 form the second damage mitted as we have a start of 1006.



Next, we take into account a selection effect of DLA galaxies (1) Surface brightness dimming effect: fail to identify DLA galaxies fainter than observational brightness limits (>25 mag arcsec^-1)



#### Direct Search for optical counterparts of DLAs



Fig. 3.—Smoothed *B*, *R*, *J*, and *K* images of the PKS 0952+179 field that contains a DLA system at z = 0.239. The PSF of the quasar has been subtracted in the *B*, *R*, and *J* images, but not in the *K* image, as there was no suitable PSF star in the field. The residuals in *B*, *R*, and *J* and the quasar in *K* have been masked. Objects are labeled only on the *J* image, for clarity. All 10 of these are detected in *K*. Features in the *B* and *R* images that lie at the edges of the mask are artifacts of the PSF subtraction process; only objects labeled 3, 4, 5, 8, 9, and 10 are detected in *B*, while those labeled 3, 4, 5, 7, 8, 9, and 10 are detected in *R*. Objects 1 and 2 are the best candidates for the DLA galaxy. Object 7 is an ERO, with R-K = 6.5. See § 3.2 for more details.

(Rao et al. 2003, ApJ, 595, 94)

Next, we add a new selection effect of DLA galaxies
(2) <u>Masking effect</u>: fail to identify DLA galaxies hidden or contaminated by a point spread function of background QSOs



# **Radio Surveys**

Another way to explore DLAs APART FROM THE SELECTION EFFECTS

•Arecibo Dual-Beam Survey (ADBS) [US]

Blind search for HI 21 cm emission covering ~430 deg<sup>2</sup> of sky

The radio samples are 250-300 HI-selected galaxies

(a)Detections of optical counterparts (Rosenberg et al.2005)

- ← the 2MASS J-,H-,K-band observations  $\Rightarrow$  *L*(*J*)-*M*(*HI*) *relation*??
- (b) High N(HI) samples (Rosenberg & Schneider 2003)
  - $\iff \text{Implication for DLA systems} \Rightarrow \sigma M(HI) \text{ relation}$

•HI Parkes All Sky Survey (HIPASS) [Australia]

Blind search the whole southern sky for HI 21cm emission

(a) Extragalactic radio objects (Zwaan et al. 2003, 2005)

~4300 extragalactic HI objects

(about 80% optical counterparts are confirmed: Doyle et al.2005)

⇒ HI Mass Function,  $\Omega$  (HI), Dark galaxies..

(b) Halo clouds (HVC) (Putman et al. 2003)

- ⇒ Missing satellites of the Local Group
- ⇒ CIV, MgII system





Arecibo HI Sky Survey (Solar et al. 1994)



### **Disk Size vs HI mass**



#### We find a tight correlation between the HI masses and the cross sections: $\sigma \propto M(HI)^p$ ; p=0.97 ± 0.01



### <u>DLA systems と galaxies との違いはあるのか?</u>



### Luminosity vs M(HI) relation



### Our result agrees with the L(J)-M(HI) relation







### No significant difference between DLAs and All galaxies!



### HI Mass Function (HIMF)





# **Prediction:** SFR -M(HI) relation



The SFR is correlated more tightly with the HI mass  $SFR \propto M(HI)^{\alpha} \quad \alpha = 1.22 \pm 0.05$ 

# **Recent Observational Results**

Optical Surveys for HI-selected Galaxies
 SINGG (Survey for Ionization in Neutral-Gas Galaxies)
 H-alpha emission lines from HIPASS galaxies

(e.g. Meurer et al. 2006 ApJS, 165, 307)



93 HIPASS targets ⇒ Star Formation Rates

#### HIPSS Catalogue: Optical Counterparts of HI Selected Galaxies (Doyle et al. 2005)



Figure 7. Log (integrated H I radio flux) versus  $B_j$  apparent magnitudes for the optically matched HICAT sources. Match categories are listed in the insert. This shows there is a clear trend that, the brighter the optical magnitude, the larger the H I radio flux.

### Optical Counterparts of ADBS samples



# Good Agreement with the SFR-M(HI) Relation

More samples of low-M(HI) systems !

HI-selected galaxies provide good clues for determining the SFRs



Our model suggests that the average SFRs  $\,$  0.01  $M_{\odot}$  /yr.

#### [C] Radio properties of DLA systems at redshift z=0

Another way to explore DLA systems apart from selection effects.

Detection of DLA galaxies by Blind 21cm surveys (e.g. Rosenberg & Schneider 2003)

⇒ about 50 HI-rich galaxies with HI column densities comparable to those in DLA systems

#### We find that

- (1) A tight correlation between the HI masses and the cross sections: Log  $\sigma \propto$ Log M(HI)
- (2) HI-rich galaxies with  $10^{9}M_{\odot}$  mainly contribute to the population of DLA systems at z=0
- ⇒ Our result is entirely consistent with the observational properties of HI-selected galaxies in the radio



# **Conclusions**

•We investigate evolution of Damped Lyman  $\alpha$  systems taking into account merging processes of dark halos from hierarchical galaxy formation models

Our results are *simultaneously* consistent with the observational properties:

DLA systems: Metallicity evolution, N(HI)-distribution

Optically selected-galaxies: Luminosity functions, HI-gas mass fraction

Radio selected-galaxies: HI-disk size, Luminosities(J-band), HIMF, Ω(HI)

LSB dwarf galaxies primarily contribute to the population of DLA systems at z<1: size ~3kpc, Sb ~22 to 27 mag  $arcsec^{-1}$ ,SFR ~10<sup>-2</sup> M<sub> $\odot$ </sub>yr<sup>-1</sup>

DLA corresponds to HI-selected galaxies at M(HI)>10<sup>8</sup>M<sub>☉</sub> in blind Radio Surveys (ADBS, HIPASS)

(NB: sub-DLA corresponds to HIPASS galaxies at  $M(HI) \sim 10^7 M_{\odot}$ ) (Okoshi et al.2007)

⇒ Our prediction: more tight relation: SFR-M(HI) relation

#### High redshift (z>2) vs Low redshift (z<2)



#### **Different Population??**

$$\frac{dN}{dz} = n\pi r^2 \frac{c}{H(z)} (1+z)^2$$
$$= 0.20 \left(\frac{r}{19 \ h^{-1} \ \text{kpc}}\right)^2 \frac{n}{0.016 \ h^3 \ \text{Mpc}^{-3}}$$

Number density vs Cross section

#### **Difficulties for realizing high-z DLA disks**

How one can form rotaionally supported disks ~ 20 h<sup>-1</sup>kpc at z>2?

**Tidal torques provide 5-10 % of the angular momentum for rotational support** 

*The radius of gas sphere at turn-around* is ~200 h<sup>-1</sup>kpc

Spherical top-hat flactuation  $\Rightarrow$  collapse timescale

$$t_{coll} \sim 2t_{dyn} \sim \pi \left(\frac{2GM}{R^3}\right)^{-1/2} \sim 3Gyr \left(\frac{M}{10^{12}M_{\odot}}\right)^{-1/2} \left(\frac{\tau_m}{200 \text{kpc}}\right)^{3/2}$$

Need for some information about Spatial distribution : tidal tail, caustics or panckaes <u>Theoretical Models [準解析的手法とNumerical Simulations]</u>

• Nagamine, Springel, Hernquist (SPH) DLAs  $\Rightarrow$  Compact objects  $M_{DLA}=10^{11.2}M_{\odot}$ 

**Too high metallicity** ⇒ **Strong Wind Model** (Low resolution?)

• *Bouche, Gardner, Katz, Hernquist, Weinberg* DLAs ⇒ (massive) galaxies with large disks

Halo mass M~10<sup>10</sup> M<sub>☉</sub>以下のハローに対して、cross-section vs circular velocityの関係( $\sigma \propto Vc^{\beta}$ )を外挿して考察

**Too large cross-sections** (Low resolution?)

• *Maller, Somerville, Primack (SAM)* DLAs ⇒ galaxies with Mestel-type disks N(HI)∝R<sup>-1</sup>

α <sub>\*</sub>は考慮されていないため、metallicity evolutionは再現できず。 dN/dN(HI)やLarge cross-sectionも説明できず。

**Results of Numerical Simulations** 



SPH: Nagamine et al. 2004

# <u>これまでの結果</u>

- DLAs correspond to HI-selected galaxies at M(HI)>10<sup>8</sup>M<sub>☉</sub> in blind Radio Surveys (ADBS, HIPASS)
   ⇒ Our prediction: more tight relation: SFR-M(HI) relation
- DLAs are LSB dwarf galaxies (~3kpc) at z<1

Our results are entirely consistent with the observational results of the counterparts:

(a) DLAs [HST]: Lanzetta et al.2002 Rao et al. 2003, Hopkins et al.2005
(b) HI selected galaxies [BRS]: Rosenberg et al. 2005

High redshift z では?



### Detection of Lyman alpha emission from DLA-host galaxies



FORS1/G600B spectrum of the z=2.0395 Damped Ly line. The 1 noise spectrum (per 5 Å resolution element) is shown as a dashed line (blue). The emission line is detected at 9.3 sigma .

#### 2D spectra of a DLA at *z*=2.0395



### **DLA galaxies at high redshift detected in emission**

Table 2. Ly $\alpha$  emission and metallicity data for five  $z \ge 1.9$  DLA galaxies.  $b_{\text{DLA}}$  is the impact parameter,  $\log(N)$  is the HI column density, and  $\Delta v$  is the difference between DLA redshift and QSO redshift given in km s<sup>-1</sup>. The "Type" classifications in the last column are defined as " $z_1 \approx z_2$ ":  $|\Delta v| \le 3000$  km s<sup>-1</sup>; "sub-DLA":  $\log(N) \le 20.3$ ; "DLA": classic intervening non-sub DLAs.

| ID           | NICMOS  | $z_{\rm DLA}$ | $b_{\rm DLA}$ | Emission         | $\log(N)$          | [M/H]        | М      | [M/H]  | ZQSO  | $\Delta v$            | Type                         |
|--------------|---------|---------------|---------------|------------------|--------------------|--------------|--------|--------|-------|-----------------------|------------------------------|
|              | ID      |               | ~             | refs.            | $\mathrm{cm}^{-2}$ |              |        | refs.  |       | ${ m km}~{ m s}^{-1}$ |                              |
| DLAg0528-25  | N-7-1C  | 2.8110        | 1.14(2)       | 1, 3, 5, 10, 11  | 21.35              | -0.75, -0.76 | Si, Zn | 14, 15 | 2.797 | -1100                 | $z_{\rm s}\approx z_{\rm c}$ |
| sDLAg2233+13 | N-16-1D | 3.1493        | 2.51(2)       | 2, 4, 10, 11, 12 | 20.00              | $\geq -1.04$ | Si     | 16     | 3.298 | 10500                 | sub-DLA                      |
| DLAg0151+04  | _       | 1.9342        | 0.93          | 6, 7, 8, 9       | 20.36              |              |        |        | 1.922 | -1200                 | $\chi_{a}\approx\chi_{c}$    |
| DLAg2206-19  | N-14-1C | 1.9205        | 0.99(2)       | 10, 11           | 20.65              | -0.39, -0.42 | Zn, Si | 15, 17 | 2.559 | 58 600                | DLA                          |
| DLAg0458-02  | _       | 2.0396        | 0.3(3)        | 13               | 21.78              | -1.17, -1.19 | Zn, Zn | 15, 17 | 2.286 | 23300                 | DLA                          |

Møller & Warren (1993); (2) Steidel et al. (1995); (3) Warren & Møller (1996); (4) Djorgovski et al. (1996); (5) Møller & Warren (1998);
 Møller et al. (1998); (7) Fynbo et al. (1999); (8) Møller (1999); (9) Fynbo et al. (2000); (10) Warren et al. (2001); (11) Møller et al. (2002);
 Christensen et al. (2004); (13) this paper, (14) Lu et al. (1996); (15) Kulkarni & Fall (2002); (16) Lu et al. (1998); (17) Prochaska et al. (2003).

High-z DLA galaxies are also very COMAPCT !? ⇒MORE samples are required to study high-z DLA galaxies ⇒ The difficulties of detecting the emission lines; Compactness, Low Surface Brightness,...

#### Half-light radius & Optical to NIR color of high-z DLA galaxies (Moller et al. 2002, ApJ, 574,51)



For 3.—Left: Half-light radius vs. absolute magnitude for 21 HDF-N LBGs with 2.0 < z < 3.5, measured by Marleau & Simard (1998), and the three DLA galaxies. The 16 LBGs consisting of a single component are plotted as open circles. The 14 components of the remaining five LBGs are plotted as open squares. The three DLA galaxies are plotted as filled circles. The DLA galaxies have half-light radii in the same range as the LBGs of similar absolute magnitude. *Right:* Optical to near-infrared  $V-H_{160}$  color vs. absolute magnitude for the same 21 LBGs and three DLA galaxies, using the same symbols. The colors of the LBGs are taken from Papovich et al. (2001). Their catalog differs from that of Marleau & Simard (1998) in terms of the number of galaxy components, with 19 single galaxies plus two galaxies with a total of four components. Therefore, we have used the  $V_{606}$  magnitudes of Papovich et al. to calculate absolute magnitudes. The DLA galaxies have colors similar to those of the Lyman break galaxies of similar absolute magnitude.





**Observational Strategy** 

The Detection of emissions from DLA host-galaxies at HIGH Z

(e.g. Moller, Fynbo, Ledoux's works)

'Large Observatories Joint Comprehensive Search'

「どのような観点からどのような観測量に注目するか」 を吟味しなければならない!

#### [The Aim of this Strategy]

- The nature of high-z DLAs (金属量の切り口で)
- Lyman Break Galaxies (空間相関の切り口で)
- The hosts of Gamma-ray Bursts (吸収線プロファイルの切り口で)

# 🛑 モデルの予測が必要な側面がある

# Strategy for detecting emission lines from DLA galaxies at high z

(Moller 2004 private communication)



Luminous galaxies  $\Rightarrow$  High metallicity Z

### Ly *AFlux* vs Metallicity relation predicted by our model

#### DLA galaxies (Moller et al.) (*blue dots*) Detection limits of Subaru Telescopes (*red-dashed lines*)



Okoshi, Minowa, Moller, Fynbo, Ledoux, Bouche et al. 2005-2006

# Key points

• Low redshift z=0:

HI-selected galaxies at  $M(HI) < 10^8 M_{\odot}$ 

The nature of DLAs and subDLAs
Star formation laws

• *High redshift z>2:* 

Large samples !!(e.g., Spectra of GRB afterglow )



Metalの空間分布(e.g., SNe explosions) Metal systems (e.g., MgII, CIV systems) Lyman-break galaxiesとの相関 Sub-structure problems UV background radiation (Proximity effects) He II reionization Angular-momentum problems etc.....