next up previous contents
Next: ÂÀÍÛ·Ï¤Î»Ñ Up: Kepler¤Îˡ§ Previous: ¥Ë¥å¡¼¥È¥ó¤Îˡ§   Contents

Kepler¤Îˡ§

  1. ÏÇÀ±¤Îµ°Æ»¤ÏÂÀÍۤȰì¤Ä¤Î¾ÇÅÀ¤È¤¹¤ëÂʱߤǤ¢¤ë
    ÇØ·Ê:
    1. Å·Æ°À⤫¤éÃÏÆ°Àâ¤Ø¢ª¥³¥Ú¥ë¥Ë¥¯¥¹ÅªÅ¾²ó
    2. ¤·¤«¤·¡¢±ßµ°Æ»¤ò²¾Äꤹ¤ë¤È¡¢²ÐÀ±¤Î±¿Æ°¤òÀâÌÀ¤Ç¤­¤Ê¤«¤Ã¤¿
    3. ¡Ö´°Á´¡×¤Ç¤¢¤ë¡Ö±ß¡×¤òÇË´þ¤·¡¢ÂʱߤȤ·¤¿

    \begin{figure}
\epsfxsize =0.5\hsize
\epsfbox{elliptic.eps}
\end{figure}

    $F$:
    ¾ÇÅÀ
    $a$:
    ĹȾ·Â
    $b$:
    ûȾ·Â
    $e\equiv$
    $\sqrt{1-\left(\frac{b}{a}\right)^2}$: Î¥¿´Î¨
    ÂʱߤÎÃæ¿´¤«¤é¾ÇÅÀ¤Þ¤Ç¤ÎŤµ: $ae$
    ÂʱߤÎÊýÄø¼°¡§ $\displaystyle{\left(\frac{x}{a}\right)^2+\left(\frac{y}{b}\right)^2=1}$
    ±ß¤Î¤È¤­¡¢ $a=b=r  \Rightarrow x^2+y^2=r^2$

  2. ÌÌÀÑ®ÅÙ°ìÄê¤Îˡ§
    ´Ñ¬¥Ç¡¼¥¿¤ò²òÀϤ·¤¿·ë²Ì¡¢¡ÖÂÀÍÛ¤ÈÏÇÀ±¤ò·ë¤ÖÀþʬ¤¬°ìÄê»þ´Ö¤ËÁݤ¯ ÌÌÀѤϰìÄê¤Ç¤¢¤ë¡×¤È¤¤¤¦·ëÏÀ¤òÆÀ¤¿

    \begin{figure}
\epsfxsize =0.5\hsize
\epsfbox{area_velocity.eps}
\end{figure}

    ʪÍýŪ¤Ë¤Ï¡¢³Ñ±¿Æ°ÎÌÊݸ§¤ËÂбþ¡£

    ±¿Æ°¥¨¥Í¥ë¥®¡¼ $T=\frac{1}{2}mv^2$
    ±¿Æ°ÎÌ $\mbox{\boldmath$p$}=m\v $
    ³Ñ±¿Æ°ÎÌ ${\L }=m\r\times\v $
    $\times$: ³°ÀÑ $\leftrightarrow$ ÆâÀÑ($\cdot$)
    \begin{figure}
\epsfxsize =0.5\hsize
\epsfbox{vector_product.eps}
\end{figure}


    \begin{displaymath}
\mbox{\boldmath$a$}\cdot\b =a_x b_x + a_y b_y = ab\cos\theta
\end{displaymath}


    \begin{displaymath}
\mbox{\boldmath$a$}\times\b =(a_x b_y-a_y b_x)\hat{\mbox{\boldmath$z$}}=ab\sin\theta\hat{\mbox{\boldmath$z$}}
\end{displaymath}

    ( $\mbox{\boldmath$a$}, \b $¤¬$xy$Ê¿ÌÌÆâ¤Î¾ì¹ç)

    $\Longrightarrow$ $\mbox{\boldmath$a$}\parallel\b $¤Ê¤é¡¢ $\mbox{\boldmath$a$}\times\b =0$.


    \begin{displaymath}
\frac{\d\L }{\d t}=m\frac{\d\r }{\d t}\times\v +m\r\times\f...
...,3){$\cdot$}
\put(6,4){\circle{14}}
\end{picture}\v\times\v =0
\end{displaymath}

    ¤¤¤Þ¡¢ $\r\parallel\mbox{\boldmath$F$}$¤Ê¤Î¤Ç( $\mbox{\boldmath$F$}=-\frac{GMm}{r^2}\hat{\r }$)¡¢

    \begin{displaymath}
\frac{\d\L }{\d t}=0  \Longrightarrow  \L ={\rm const.  (³Ñ±¿Æ°ÎÌÊݸ)}
\end{displaymath}

    \begin{figure}
\epsfxsize =0.5\hsize
\epsfbox{angular_momentum.eps}
\end{figure}

    ¤³¤³¤ÇÌÌÀÑ®ÅÙ¤Ï $\displaystyle{\frac{\d S}{\d t}}$¤Ç¤¢¤ë¡£¤¹¤ë¤È¡¢

    \begin{displaymath}
\Delta S \simeq \frac{1}{2}\left\vert\r\times\v\Delta t\right\vert
\end{displaymath}


    \begin{displaymath}
\Longrightarrow \frac{\Delta S}{\Delta t}\simeq\frac{\d S}{...
...vert\r\times\v\right\vert=\frac{1}{2}\vert\L\vert={\rm const.}
\end{displaymath}


    \begin{displaymath}
\setlength{\unitlength}{1pt}
\thinlines \begin{picture}(1...
...ure}   \frac{\d S}{\d t}={\rm const.,  ¤Ä¤Þ¤ê¡¢ÌÌÀÑ®ÅÙ°ìÄê//}
\end{displaymath}

    \begin{figure}
\epsfxsize =0.5\hsize
\epsfbox{area_velocity2.eps}
\end{figure}

  3. µ°Æ»Ä¹È¾·Â¤Î3¾è¤¬¸øž¼þ´ü¤Î2¾è¤ËÈæÎã(ĴϤÎˡ§)¡Ä $a^3\propto T^2$

    ´Êñ¤Î¤¿¤á¡¢±ßµ°Æ»¤ò²¾Äꤹ¤ë

    ÎϤΤĤꤢ¤¤(ËüÍ­°úÎÏ=±ó¿´ÎÏ)¤è¤ê¡¢

    \begin{displaymath}
\frac{GMm}{r^2}=\frac{mv^2}{r}=mr\dot{\theta}^2=mr\omega^2,  v=r\omega
\end{displaymath}

    ¤¢¤ë¤¤¤Ï¡¢±¿Æ°ÊýÄø¼°(¤¿¤À¤·$\ddot{r}=0$)¤è¤ê¡¢

    \begin{displaymath}
m(-r\omega^2)=-\frac{mv^2}{r}=-\frac{GMm}{r^2}
\end{displaymath}

    ¤³¤ì¤è¤ê¡¢

    \begin{displaymath}
rv^2=GM.
\end{displaymath}

    ¤¤¤Þ¡¢¼þ´ü$T$¤Ï¡¢

    \begin{displaymath}
T=\frac{2\pi r}{v}\left(=\frac{2\pi}{\omega}\right)
\end{displaymath}

    ¤Ç¤¢¤ë¤«¤é¡¢

    \begin{displaymath}
v=\frac{2\pi r}{T}
\end{displaymath}

    ¤³¤ì¤é¤è¤ê¡¢

    \begin{displaymath}
rv^2=\frac{4\pi^2 r^3}{T^2}=GM
\end{displaymath}


    \begin{displaymath}
\Longrightarrow r^3\propto T^2.
\end{displaymath}

    ¤¤¤Þ¡¢Ãϵå¤Ï1ǯ¤Ç1¼þ¤·¡¢µ°Æ»È¾·Â¤Ï1AU¤Ê¤Î¤Ç¡¢

    \begin{displaymath}
\left(\frac{r}{\rm AU}\right)^3=\left(\frac{T}{\rm yr}\right)^2
\end{displaymath}

    ¤È½ñ¤±¤ë¡£


\begin{itembox}[l]{\fbox{½ÉÂê}}
\begin{itemize}
\item[Ìä1] $G=6.7\times 10^{-11...
...μÁ
Î̤ÈÈæ³Ó¤·¡¢¤É¤ì¤¯¤é¤¤¤Î¸íº¹¤Çµá¤Þ¤Ã¤¿¤«Ä´¤Ù¤è¡£
\end{itemize}\end{itembox}

¤Ê¤ª¡¢±¿Æ°ÊýÄø¼°

\begin{displaymath}
m\frac{\d ^2 r}{\d t^2}=-\frac{GMm}{r^2}
\end{displaymath}

¤è¤ê¡¢

\begin{displaymath}
m\frac{r}{T^2}\sim \frac{GMm}{r^2}
\end{displaymath}


\begin{displaymath}
\Rightarrow~\frac{r^3}{T^2}\sim GM
\end{displaymath}


\begin{displaymath}
\Rightarrow~r^3\propto T^2
\end{displaymath}

¤ÈÍý²ò¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡£


next up previous contents
Next: ÂÀÍÛ·Ï¤Î»Ñ Up: Kepler¤Îˡ§ Previous: ¥Ë¥å¡¼¥È¥ó¤Îˡ§   Contents
NAGASHIMA Masahiro 2009-12-08